Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 193(12): 2031-2046, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37689386

RESUMEN

The pathophysiology of long-recognized hematologic abnormalities in Ebolavirus (EBOV) disease (EVD) is unknown. From limited human sampling (of peripheral blood), it has been postulated that emergency hematopoiesis plays a role in severe EVD, but the systematic characterization of the bone marrow (BM) has not occurred in human disease or in nonhuman primate models. In a lethal rhesus macaque model of EVD, 18 sternal BM samples exposed to the Kikwit strain of EBOV were compared to those from uninfected controls (n = 3). Immunohistochemistry, RNAscope in situ hybridization, transmission electron microscopy, and confocal microscopy showed that EBOV infects BM monocytes/macrophages and megakaryocytes. EBOV exposure was associated with severe BM hypocellularity, including depletion of myeloid, erythroid, and megakaryocyte hematopoietic cells. These depletions were negatively correlated with cell proliferation (Ki67 expression) and were not associated with BM apoptosis during disease progression. In EBOV-infected rhesus macaques with terminal disease, BM showed marked hemophagocytosis, megakaryocyte emperipolesis, and the release of immature hematopoietic cells into the sinusoids. Collectively, these data demonstrate not only direct EBOV infection of BM monocytes/macrophages and megakaryocytes but also that disease progression is associated with hematopoietic failure, notably in peripheral cytopenia. These findings inform current pathophysiologic unknowns and suggest a crucial role for BM dysfunction and/or failure, including emergency hematopoiesis, as part of the natural history of severe human disease.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Humanos , Ebolavirus/fisiología , Macaca mulatta , Médula Ósea , Progresión de la Enfermedad
2.
J Infect Dis ; 228(4): 371-382, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37279544

RESUMEN

BACKGROUND: Ebola virus (EBOV) disease (EVD) is one of the most severe and fatal viral hemorrhagic fevers and appears to mimic many clinical and laboratory manifestations of hemophagocytic lymphohistiocytosis syndrome (HLS), also known as macrophage activation syndrome. However, a clear association is yet to be firmly established for effective host-targeted, immunomodulatory therapeutic approaches to improve outcomes in patients with severe EVD. METHODS: Twenty-four rhesus monkeys were exposed intramuscularly to the EBOV Kikwit isolate and euthanized at prescheduled time points or when they reached the end-stage disease criteria. Three additional monkeys were mock-exposed and used as uninfected controls. RESULTS: EBOV-exposed monkeys presented with clinicopathologic features of HLS, including fever, multiple organomegaly, pancytopenia, hemophagocytosis, hyperfibrinogenemia with disseminated intravascular coagulation, hypertriglyceridemia, hypercytokinemia, increased concentrations of soluble CD163 and CD25 in serum, and the loss of activated natural killer cells. CONCLUSIONS: Our data suggest that EVD in the rhesus macaque model mimics pathophysiologic features of HLS/macrophage activation syndrome. Hence, regulating inflammation and immune function might provide an effective treatment for controlling the pathogenesis of acute EVD.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Linfohistiocitosis Hemofagocítica , Síndrome de Activación Macrofágica , Animales , Síndrome de Activación Macrofágica/terapia , Macaca mulatta
3.
Antiviral Res ; 213: 105589, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37003305

RESUMEN

The COVID-19 pandemic spurred the rapid development of a range of therapeutic antibody treatments. As part of the US government's COVID-19 therapeutic response, a research team was assembled to support assay and animal model development to assess activity for therapeutics candidates against SARS-CoV-2. Candidate treatments included monoclonal antibodies, antibody cocktails, and products derived from blood donated by convalescent patients. Sixteen candidate antibody products were obtained directly from manufacturers and evaluated for neutralization activity against the WA-01 isolate of SARS-CoV-2. Products were further tested in the Syrian hamster model using prophylactic (-24 h) or therapeutic (+8 h) treatment approaches relative to intranasal SARS-CoV-2 exposure. In vivo assessments included daily clinical scores and body weights. Viral RNA and viable virus titers were quantified in serum and lung tissue with histopathology performed at 3d and 7d post-virus-exposure. Sham-treated, virus-exposed hamsters showed consistent clinical signs with concomitant weight loss and had detectable viral RNA and viable virus in lung tissue. Histopathologically, interstitial pneumonia with consolidation was present. Therapeutic efficacy was identified in treated hamsters by the absence or diminution of clinical scores, body weight loss, viral loads, and improved semiquantitative lung histopathology scores. This work serves as a model for the rapid, systematic in vitro and in vivo assessment of the efficacy of candidate therapeutics at various stages of clinical development. These efforts provided preclinical efficacy data for therapeutic candidates. Furthermore, these studies were invaluable for the phenotypic characterization of SARS CoV-2 disease in hamsters and of utility to the broader scientific community.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Mesocricetus , Pandemias , Anticuerpos Monoclonales/uso terapéutico , Modelos Animales de Enfermedad , ARN Viral
4.
Antiviral Res ; 214: 105605, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37068595

RESUMEN

This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.


Asunto(s)
COVID-19 , Neumonía , Humanos , Animales , Cricetinae , COVID-19/diagnóstico por imagen , SARS-CoV-2 , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Enzima Convertidora de Angiotensina 2 , Tomografía de Emisión de Positrones , Mesocricetus , Progresión de la Enfermedad
5.
Am J Pathol ; 192(1): 121-129, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626576

RESUMEN

The pathogenesis of Ebola virus disease (EVD) is still incomplete, in spite of the availability of a nonhuman primate modelfor more than 4 decades. To further investigate EVD pathogenesis, a natural history study was conducted using 27 Chinese-origin rhesus macaques. Of these, 24 macaques were exposed intramuscularly to Kikwit Ebola virus and euthanized at predetermined time points or when end-stage clinical disease criteria were met, and 3 sham-exposed macaques were euthanized on study day 0. This study showed for the first time that Ebola virus causes uterine cervicitis, vaginitis, posthitis, and medullary adrenalitis. Not only was Ebola virus detected in the interstitial stromal cells of the genital tract, but it was also present in the epididymal and seminal vesicular tubular epithelial cells, ectocervical and vaginal squamous epithelial cells, and seminal fluid. Furthermore, as early as day 3 after exposure, Ebola virus replicative intermediate RNA was detected in Kupffer cells and hepatocytes. These findings in the nonhuman model provide additional insight into potential sexual transmission, possible disruption of sympathetic hormone production, and early virus replication sites in human EVD patients.


Asunto(s)
Ebolavirus/fisiología , Hormonas/metabolismo , Hígado/virología , Tropismo/fisiología , Replicación Viral/fisiología , Animales , Células Cromafines/patología , Células Cromafines/virología , Modelos Animales de Enfermedad , Epidídimo/patología , Epidídimo/virología , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Hepatocitos/patología , Hepatocitos/virología , Macrófagos del Hígado/patología , Macrófagos del Hígado/virología , Macaca mulatta , Masculino , Cervicitis Uterina/patología , Cervicitis Uterina/virología , Vaginitis/patología , Vaginitis/virología
6.
J Infect Dis ; 222(10): 1745-1755, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32498080

RESUMEN

Neurological signs and symptoms are the most common complications of Ebola virus disease. However, the mechanisms underlying the neurologic manifestations in Ebola patients are not known. In this study, peripheral ganglia were collected from 12 rhesus macaques that succumbed to Ebola virus (EBOV) disease from 5 to 8 days post exposure. Ganglionitis, characterized by neuronal degeneration, necrosis, and mononuclear leukocyte infiltrates, was observed in the dorsal root, autonomic, and enteric ganglia. By immunohistochemistry, RNAscope in situ hybridization, transmission electron microscopy, and confocal microscopy, we confirmed that CD68+ macrophages are the target cells for EBOV in affected ganglia. Further, we demonstrated that EBOV can induce satellite cell and neuronal apoptosis and microglial activation in infected ganglia. Our results demonstrate that EBOV can infect peripheral ganglia and results in ganglionopathy in rhesus macaques, which may contribute to the neurological signs and symptoms observed in acute and convalescent Ebola virus disease in human patients.


Asunto(s)
Fiebre Hemorrágica Ebola/complicaciones , Fiebre Hemorrágica Ebola/patología , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/patología , Enfermedades del Sistema Nervioso Periférico/complicaciones , Enfermedades del Sistema Nervioso Periférico/patología , Animales , Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Modelos Animales de Enfermedad , Ebolavirus , Femenino , Ganglios , Ganglios Espinales/patología , Ganglios Espinales/virología , Ganglión/patología , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunohistoquímica , Leucocitos Mononucleares , Macaca mulatta , Macrófagos/patología , Masculino , Microglía/patología , Microglía/virología , Necrosis , Sistema Nervioso Parasimpático/patología , Enfermedades del Sistema Nervioso Periférico/virología , Células Receptoras Sensoriales/patología , Células Receptoras Sensoriales/virología , Sistema Nervioso Simpático/patología
7.
Am J Pathol ; 190(9): 1867-1880, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32479821

RESUMEN

The most commonly reported symptom of post-Ebola virus disease syndrome in survivors is arthralgia, yet involvement of the joints in acute or convalescent Ebola virus infection is not well characterized in human patients or animal models. Through immunohistochemistry, we found that the lining synovial intima of the stifle (knee) is a target for acute infection by Ebola virus/Kikwit, Ebola virus/Makona-C05, and Marburg virus/Angola in the rhesus macaque model. Furthermore, histologic analysis, immunohistochemistry, RNAscope in situ hybridization, and transmission electron microscopy showed that synoviocytes of the stifle, shoulder, and hip are a target for mouse-adapted Ebola virus/Yambuku-Mayinga infection during acute disease in rhesus macaques. A time course of infection study with Ebola virus/Kikwit found that the large joint synovium became immunopositive beginning on postinfection day 6. In total, the synovium of 28 of 30 rhesus macaques with terminal filovirus disease had evidence of infection (64 of 96 joints examined). On the basis of immunofluorescence, infected cell types included CD68+ type A (macrophage-like) synoviocytes and CD44+ type B (fibroblast-like) synoviocytes. Cultured primary human fibroblast-like synoviocytes were permissive to infection with Ebola and Marburg viruses in vitro. Because synovial joints include immune privileged sites, these findings are significant for future investigations of filovirus pathogenesis and persistence as well as arthralgias in acute and convalescent filovirus disease.


Asunto(s)
Infecciones por Filoviridae/virología , Sinoviocitos/virología , Animales , Células Cultivadas , Filoviridae , Humanos , Macaca mulatta
8.
Am J Pathol ; 190(7): 1449-1460, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32275904

RESUMEN

Zaire ebolavirus (EBOV) causes Ebola virus disease (EVD), which carries a fatality rate between 25% and 90% in humans. Liver pathology is a hallmark of terminal EVD; however, little is known about temporal disease progression. We used multiplexed fluorescent immunohistochemistry and in situ hybridization in combination with whole slide imaging and image analysis (IA) to quantitatively characterize temporospatial signatures of viral and host factors as related to EBOV pathogenesis. Eighteen rhesus monkeys euthanized between 3 and 8 days post-infection, and 3 uninfected controls were enrolled in this study. Compared with semiquantitative histomorphologic ordinal scoring, quantitative IA detected subtle and progressive features of early and terminal EVD that was not feasible with routine approaches. Sinusoidal macrophages were the earliest cells to respond to infection, expressing proinflammatory cytokine interleukin 6 (IL6) mRNA, which was subsequently also observed in fibrovascular compartments. The mRNA of interferon-stimulated gene-15 (ISG-15), also known as ISG15 ubiquitin like modifier (ISG15), was observed early, with a progressive and ubiquitous hybridization signature involving mesenchymal and epithelial compartments. ISG-15 mRNA was prominent near infected cells, but not in infected cells, supporting the hypothesis that bystander cells produce a robust interferon gene response. This study contributes to our current understanding of early EVD progression and illustrates the value that digital pathology and quantitative IA serve in infectious disease research.


Asunto(s)
Biomarcadores/análisis , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno/fisiología , Hígado/virología , Animales , Ebolavirus , Femenino , Fiebre Hemorrágica Ebola/inmunología , Hígado/inmunología , Hígado/patología , Estudios Longitudinales , Macaca mulatta , Masculino
9.
mBio ; 11(2)2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209677

RESUMEN

Lassa virus (LASV) poses a significant public health problem within the regions of Lassa fever endemicity in Western Africa. LASV infects several hundred thousand individuals yearly, and a considerable number of Lassa fever cases are associated with high morbidity and lethality. No approved LASV vaccine is available, and current therapy is limited to an off-label usage of ribavirin that is only partially effective and associated with significant side effects. The impact of Lassa fever on human health, together with the limited existing countermeasures, highlights the importance of developing effective vaccines against LASV. Here, we present the development and characterization of a recombinant LASV (rLASV) vaccine candidate [rLASV(IGR/S-S)], which is based on the presence of the noncoding intergenic region (IGR) of the small (S) genome segment (S-IGR) in both large (L) and S LASV segments. In cultured cells, rLASV(IGR/S-S) was modestly less fit than wild-type rLASV (rLASV-WT). rLASV(IGR/S-S) was highly attenuated in guinea pigs, and a single subcutaneous low dose of the virus completely protected against otherwise lethal infection with LASV-WT. Moreover, rLASV(IGR/S-S) was genetically stable during serial passages in cultured cells. These findings indicate that rLASV(IGR/S-S) can be developed into a LASV live-attenuated vaccine (LAV) that has the same antigenic composition as LASV-WT and a well-defined mechanism of attenuation that overcomes concerns about increased virulence that could be caused by genetic changes in the LAV during multiple rounds of multiplication.IMPORTANCE Lassa virus (LASV), the causative agent of Lassa fever, infects several hundred thousand people in Western Africa, resulting in many lethal Lassa fever cases. No U.S. Food and Drug Administration-licensed countermeasures are available to prevent or treat LASV infection. We describe the generation of a novel LASV live-attenuated vaccine candidate rLASV(IGR/S-S), which is based on the replacement of the large genomic segment noncoding intergenic region (IGR) with that of the small genome segment. rLASV(IGR/S-S) is less fit in cell culture than wild-type virus and does not cause clinical signs in inoculated guinea pigs. Importantly, rLASV(IGR/S-S) protects immunized guinea pigs against an otherwise lethal exposure to LASV.


Asunto(s)
ADN Intergénico , Reordenamiento Génico , Fiebre de Lassa/prevención & control , Vacunas Virales/genética , Células A549 , Animales , Femenino , Cobayas , Células HEK293 , Humanos , Inyecciones Subcutáneas , Fiebre de Lassa/inmunología , Virus Lassa/genética , Virus Lassa/inmunología , Masculino , Vacunación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Virales/inmunología
10.
mBio ; 11(1)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098811

RESUMEN

Lassa virus (LASV) is endemic in Western Africa and is estimated to infect hundreds of thousands of individuals annually. A considerable number of these infections result in Lassa fever (LF), which is associated with significant morbidity and a case-fatality rate as high as 69% among hospitalized confirmed patients. U.S. Food and Drug Administration-approved LF vaccines are not available. Current antiviral treatment is limited to off-label use of a nucleoside analogue, ribavirin, that is only partially effective and associated with significant side effects. We generated and characterized a recombinant LASV expressing a codon-deoptimized (CD) glycoprotein precursor gene (GPC), rLASV-GPC/CD. Comparison of growth kinetics and peak titers showed that rLASV-GPC/CD is slightly attenuated in cell culture compared to wild-type (WT) recombinant LASV (rLASV-WT). However, rLASV-GPC/CD is highly attenuated in strain 13 and Hartley guinea pigs, as reflected by the absence of detectable clinical signs in animals inoculated with rLASV-GPC/CD. Importantly, a single subcutaneous dose of rLASV-GPC/CD provides complete protection against an otherwise lethal exposure to LASV. Our results demonstrate the feasibility of implementing a CD approach for developing a safe and effective LASV live-attenuated vaccine candidate. Moreover, rLASV-GPC/CD might provide investigators with a tool to safely study LASV outside maximum (biosafety level 4) containment, which could accelerate the elucidation of basic aspects of the molecular and cell biology of LASV and the development of novel LASV medical countermeasures.IMPORTANCE Lassa virus (LASV) infects several hundred thousand people in Western Africa, resulting in many lethal Lassa fever (LF) cases. Licensed LF vaccines are not available, and anti-LF therapy is limited to off-label use of the nucleoside analog ribavirin with uncertain efficacy. We describe the generation of a novel live-attenuated LASV vaccine candidate. This vaccine candidate is based on mutating wild-type (WT) LASV in a key region of the viral genome, the glycoprotein precursor (GPC) gene. These mutations do not change the encoded GPC but interfere with its production in host cells. This mutated LASV (rLASV-GPC/CD) behaves like WT LASV (rLASV-WT) in cell culture, but in contrast to rLASV-WT, does not cause disease in inoculated guinea pigs. Guinea pigs immunized with rLASV-GPC/CD were protected against an otherwise lethal exposure to WT LASV. Our results support the testing of this candidate vaccine in nonhuman primate models ofLF.


Asunto(s)
Fiebre de Lassa/prevención & control , Virus Lassa/genética , Virus Lassa/inmunología , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Células A549 , África Occidental , Secuencia de Aminoácidos , Animales , Arenaviridae , Arenavirus , Bunyaviridae , Chlorocebus aethiops , Codón , Modelos Animales de Enfermedad , Femenino , Genes Virales/genética , Genoma Viral , Glicoproteínas/genética , Cobayas , Humanos , Fiebre de Lassa/inmunología , Fiebre de Lassa/virología , Masculino , Ribavirina , Vacunas Atenuadas/genética , Células Vero
12.
J Infect Dis ; 219(11): 1818-1822, 2019 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-30517671

RESUMEN

Lassa fever (LF) survivors develop various clinical manifestations including polyserositis, myalgia, epididymitis, and hearing loss weeks to months after recovery from acute infection. We demonstrate a systemic lymphoplasmacytic and histiocytic arteritis and periarteritis in guinea pigs more than 2 months after recovery from acute Lassa virus (LASV) infection. LASV was detected in the arterial tunica media smooth muscle cells by immunohistochemistry, in situ hybridization, and transmission electron microscopy. Our results suggest that the sequelae of LASV infection may be due to virus persistence resulting in systemic vascular damage. These findings shed light on the pathogenesis of LASV sequelae in convalescent human survivors.


Asunto(s)
Fiebre de Lassa/virología , Virus Lassa/inmunología , Animales , Convalecencia , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Cobayas , Humanos , Inmunohistoquímica , Inflamación , Fiebre de Lassa/patología , Masculino
13.
J Infect Dis ; 218(suppl_5): S423-S433, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30053050

RESUMEN

Previously, several studies have been performed to delineate the development and progression of Marburg virus infection in nonhuman primates (NHPs), primarily to clarify the mechanisms of severe (fatal) disease. After the 2013-2016 Ebola virus disease (EVD) epidemic in Western Africa, there has been a reassessment of the available filovirus animal models and the utility of these to faithfully recapitulate human disease. The high lethality of the NHP models has raised doubts as to their ability to provide meaningful data for the full spectrum of disease observed in humans. Of particular interest are the etiologic and pathophysiologic mechanisms underlying postconvalescent sequelae observed in human survivors of EVD and Marburg virus disease (MVD). In the current study, we evaluated the lesions of MVD in NHPs; however, in contrast to previous studies, we focused on the potential for development of sequelae similar to those reported in human survivors of MVD and EVD. We found that during acute MVD in the macaque model, there is frequent inflammation of peripheral nerves, autonomic ganglia, and the iris of the eye. Furthermore, we demonstrate viral infection of the ocular ciliary body and retina, testis, epididymis, ovary, oviduct, uterine endometrium, prostate, and mammary gland. These findings are relevant for both development of postconvalescent sequelae and the natural transmission of virus.


Asunto(s)
Enfermedad del Virus de Marburg/patología , Animales , Modelos Animales de Enfermedad , Ojo/patología , Femenino , Ganglios/patología , Humanos , Macaca mulatta , Masculino , Glándulas Mamarias Humanas/patología , Nervios Periféricos/patología , Sistema Urogenital/patología
14.
Sci Rep ; 8(1): 10727, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30013082

RESUMEN

The recurrence of new human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) underscores the need for effective therapeutic countermeasures. Nonhuman primate models are considered the gold standard for preclinical evaluation of therapeutic countermeasures. However, MERS-CoV-induced severe respiratory disease in humans is associated with high viral loads in the lower respiratory tract, which may be difficult to achieve in nonhuman primate models. Considering this limitation, we wanted to ascertain the effectiveness of using a MERS-CoV infectious clone (icMERS-0) previously shown to replicate to higher titers than the wild-type EMC 2012 strain. We observed respiratory disease resulting from exposure to the icMERS-0 strain as measured by CT in rhesus monkeys with concomitant detection of virus antigen by immunohistochemistry. Overall, respiratory disease was mild and transient, resolving by day 30 post-infection. Although pulmonary disease was mild, these results demonstrate for the first time the utility of CT imaging to measure disease elicited by a MERS-CoV infectious clone system in nonhuman primate models.


Asunto(s)
Infecciones por Coronavirus/diagnóstico , Pulmón/diagnóstico por imagen , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Animales , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/patología , Pulmón/virología , Macaca mulatta , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , ARN Viral/aislamiento & purificación , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X , Carga Viral/genética , Replicación Viral/genética
15.
Sci Rep ; 8(1): 1250, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352230

RESUMEN

Survivors of Ebola virus infection may become subclinically infected, but whether animal models recapitulate this complication is unclear. Using histology in combination with immunohistochemistry and in situ hybridization in a retrospective review of a guinea pig confirmation-of-virulence study, we demonstrate for the first time Ebola virus infection in hepatic oval cells, the endocardium and stroma of the atrioventricular valves and chordae tendinae, satellite cells of peripheral ganglia, neurofibroblasts and Schwann cells of peripheral nerves and ganglia, smooth muscle cells of the uterine myometrium and vaginal wall, acini of the parotid salivary glands, thyroid follicular cells, adrenal medullary cells, pancreatic islet cells, endometrial glandular and surface epithelium, and the epithelium of the vagina, penis and, prepuce. These findings indicate that standard animal models for Ebola virus disease are not as well-described as previously thought and may serve as a stepping stone for future identification of potential sites of virus persistence.


Asunto(s)
Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/patología , Animales , Glándulas Endocrinas/virología , Femenino , Genitales/virología , Cobayas , Corazón/virología , Fiebre Hemorrágica Ebola/virología , Hígado/virología , Masculino , Sistema Nervioso Periférico/virología
16.
Circ Cardiovasc Interv ; 8(5)2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25940523

RESUMEN

BACKGROUND: Renal denervation (RDN) emerged as a therapeutic option for resistant hypertension. Nerve regrowth after RDN has been questioned. We aimed to characterize the nerve response after RDN. METHODS AND RESULTS: Swine underwent bilateral RDN and were followed up for 7, 30, and 90 days and evaluated with S100 (Schwann cell), tyrosine hydroxylase (TH; efferent nerves), and growth-associated protein 43 (neurite regeneration) markers. At 7 days, nerve changes consisted of necrosis associated with perineurial fibrosis and distal atrophy with inflammation. At 30 days changes were substituted by healing changes (ie, fibrosis). This response progressed through 90 days resulting in prominent neuroma formation. Immunohistochemistry at 7 days: TH staining was strongly decreased in treated nerves. Early regenerative attempts were observed with strongly TH and growth-associated protein 43 positive and weak S100 disorganized nerve sprouts within the thickened perineurium. Distal atrophic nerves show weak staining for all 3 markers. At 30 days, affected nerves show a weak TH and S100 staining. Evident growth-associated protein 43+ disorganized neuromatous tangles in the thickened perineurium of severed nerves were observed. At 90 days, some TH expression was observed together with prominent S100+ and growth-associated protein 43+ neuromatous tangles with disorganized architecture. The potential for regenerative activity is unlikely based on the disrupted architecture of these neuromatous tangles at the radiofrequency lesion sites. CONCLUSIONS: This study is the first documentation that a progressive regenerative response occurs as early as 7 days after RDN, resulting in a poorly organized neuromatous regeneration. This finding is of paramount importance to further establish the potential functional significance of a regeneration after RDN.


Asunto(s)
Ablación por Catéter/métodos , Desnervación , Riñón/inervación , Regeneración Nerviosa/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Biomarcadores/metabolismo , Femenino , Proteína GAP-43/metabolismo , Modelos Animales , Proteínas S100/metabolismo , Sus scrofa , Tirosina 3-Monooxigenasa/metabolismo
17.
Transl Res ; 162(6): 381-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23911638

RESUMEN

Catheter-based renal artery denervation has demonstrated to be effective in decreasing blood pressure among patients with refractory hypertension. The anatomic distribution of renal artery nerves may influence the safety and efficacy profile of this procedure. We aimed to describe the anatomic distribution and density of periarterial renal nerves in the porcine model. Thirty arterial renal sections were included in the analysis by harvesting a tissue block containing the renal arteries and perirenal tissue from each animal. Each artery was divided into 3 segments (proximal, mid, and distal) and assessed for total number, size, and depth of the nerves according to the location. Nerve counts were greatest proximally (45.62% of the total nerves) and decreased gradually distally (mid, 24.58%; distal, 29.79%). The distribution in nerve size was similar across all 3 sections (∼40% of the nerves, 50-100 µm; ∼30%, 0-50 µm; ∼20%, 100-200 µm; and ∼10%, 200-500 µm). In the arterial segments ∼45% of the nerves were located within 2 mm from the arterial wall whereas ∼52% of all nerves were located within 2.5 mm from the arterial wall. Sympathetic efferent fibers outnumbered sensory afferent fibers overwhelmingly, intermixed within the nerve bundle. In the porcine model, renal artery nerves are seen more frequently in the proximal segment of the artery. Nerve size distribution appears to be homogeneous throughout the artery length. Nerve bundles progress closer to the arterial wall in the distal segments of the artery. This anatomic distribution may have implications for the future development of renal denervation therapies.


Asunto(s)
Ablación por Catéter/métodos , Arteria Renal/inervación , Sus scrofa/anatomía & histología , Simpatectomía/métodos , Animales , Humanos , Hipertensión/terapia , Riñón/inervación , Modelos Anatómicos , Modelos Animales , Modelos Neurológicos , Sistema Nervioso Simpático/anatomía & histología , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...