Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Protein Sci ; 33(1): e4840, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984441

RESUMEN

Autophagy is a highly conserved cellular process that allows degradation of large macromolecules. p62/SQSTM1 is a key adaptor protein that interacts both with material to be degraded and with LC3 at the autophagosome, enabling degradation of cargos such as protein aggregates, lipid droplets and damaged organelles by selective autophagy. Dysregulation of autophagy contributes to the pathogenesis of many diseases. In this study, we investigated if the interaction of p62/SQSTM1 with LC3B could be regulated. We purified full-length p62/SQSTM1 and established an in vitro assay that measures the interaction with LC3B. We used the assay to determine the role of the different domains of p62/SQSTM1 in the interaction with LC3B. We identified a mechanism of regulation of p62/SQSTM1 where the ZZ and the PB1 domains regulate the exposure of the LIR-sequence to enable or inhibit the interaction with LC3B. A mutation to mimic the phosphorylation of a site on the ZZ domain leads to increased interaction with LC3B. Also, a small compound that binds to the ZZ domain enhances interaction with LC3B. Dysregulation of these mechanisms in p62/SQSTM1 could have implications for diseases where autophagy is affected. In conclusion, our study highlights the regulated nature of p62/SQSTM1 and its ability to modulate the interaction with LC3B through a LIR-sequence Accessibility Mechanism (LAM). Furthermore, our findings suggest the potential for pharmacological modulation of the exposure of LIR, paving the way for future therapeutic strategies.


Asunto(s)
Autofagosomas , Proteínas Asociadas a Microtúbulos , Autofagosomas/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/genética
2.
J Bone Miner Res ; 38(10): 1509-1520, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37493605

RESUMEN

Vitamin C (VitC) is essential for bone health, and low VitC serum levels increase the risk for skeletal fractures. If and how VitC affects bone mineralization is unclear. Using micro-computed tomography (µCT), histologic staining, as well as quantitative backscattered electron imaging (qBEI), we assessed the effects of VitC on femoral structure and microarchitecture, bone formation, and bone mineralization density distribution (BMDD) in the VitC incompetent Gulo-/- mouse model and wild-type mice. In particular, VitC-supplemented, 20-week-old mice were compared with age-matched counterparts where dietary VitC intake was excluded from week 15. VitC depletion in Gulo-/- mice severely reduced cortical thickness of the diaphyseal shaft and bone volume around the growth plate (eg, bone volume of the primary spongiosa -43%, p < 0.001). Loss of VitC also diminished the amount of newly formed bone tissue as visualized by histology and calcein labeling of the active mineralization front. BMDD analysis revealed a shift to higher calcium concentrations upon VitC supplementation, including higher average (~10% increase in female VitC deficient mice, p < 0.001) and peak calcium concentrations in the epiphyseal and metaphyseal spongiosa. These findings suggest higher bone tissue age. Importantly, loss of VitC had significantly more pronounced effects in female mice, indicating a higher sensitivity of their skeleton to VitC deficiency. Our results reveal that VitC plays a key role in bone formation rate, which directly affects mineralization. We propose that low VitC levels may contribute to the higher prevalence of bone-degenerative diseases in females and suggest leveraging this vitamin against these conditions. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Deficiencia de Ácido Ascórbico , Mustelidae , Masculino , Ratones , Animales , Femenino , Calcio/farmacología , Microtomografía por Rayos X , Huesos/diagnóstico por imagen , Densidad Ósea , Calcificación Fisiológica , Ácido Ascórbico/farmacología
3.
Acta Biomater ; 166: 409-418, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37088163

RESUMEN

A demanding task of the musculoskeletal system is the attachment of tendon to bone at entheses. This region often presents a thin layer of fibrocartilage (FC), mineralized close to the bone and unmineralized close to the tendon. Mineralized FC deserves increased attention, owing to its crucial anchoring task and involvement in enthesis pathologies. Here, we analyzed mineralized FC and subchondral bone at the Achilles tendon-bone insertion of rats. This location features enthesis FC anchoring tendon to bone and sustaining tensile loads, and periosteal FC facilitating bone-tendon sliding with accompanying compressive and shear forces. Using a correlative multimodal investigation, we evaluated potential specificities in mineral content, fiber organization and mechanical properties of enthesis and periosteal FC. Both tissues had a lower degree of mineralization than subchondral bone, yet used the available mineral very efficiently: for the same local mineral content, they had higher stiffness and hardness than bone. We found that enthesis FC was characterized by highly aligned mineralized collagen fibers even far away from the attachment region, whereas periosteal FC had a rich variety of fiber arrangements. Except for an initial steep spatial gradient between unmineralized and mineralized FC, local mechanical properties were surprisingly uniform inside enthesis FC while a modulation in stiffness, independent from mineral content, was observed in periosteal FC. We interpreted these different structure-property relationships as a demonstration of the high versatility of FC, providing high strength at the insertion (to resist tensile loading) and a gradual compliance at the periosteal surface (to resist contact stresses). STATEMENT OF SIGNIFICANCE: Mineralized fibrocartilage (FC) at entheses facilitates the integration of tendon in bone, two strongly dissimilar tissues. We focus on the structure-function relationships of two types of mineralized FC, enthesis and periosteal, which have clearly distinct mechanical demands. By investigating them with multiple high-resolution methods in a correlative manner, we demonstrate differences in fiber architecture and mechanical properties between the two tissues, indicative of their mechanical roles. Our results are relevant both from a medical viewpoint, targeting a clinically relevant location, as well as from a material science perspective, identifying FC as high-performance versatile composite.


Asunto(s)
Tendón Calcáneo , Animales , Ratas , Huesos , Fibrocartílago , Minerales
4.
Calcif Tissue Int ; 112(6): 675-682, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944707

RESUMEN

Autoimmune polyendocrine syndrome type-1 (APS1) is characterized by autoimmune manifestations affecting different organs from early childhood on. Immunological abnormalities, the resulting endocrinopathies, and their treatments may compromise bone health. For the first time in APS1, we analyzed transiliac bone biopsy samples by bone histomorphometry and quantitative backscattered electron imaging in three adult patients (female P1, 38 years; male P2, 47 years; male P3, 25 years). All had biallelic mutations in the autoimmune regulator gene and in addition to endocrinopathies, also significant bone fragility. Histomorphometry showed bone volume in the lower normal range for P1 (BV/TV, - 0.98 SD) and P3 (- 1.34 SD), mainly due to reduced trabecular thickness (TbTh, - 3.63 and - 2.87 SD). In P1, osteoid surface was low (OS/BS, - 0.96 SD); active osteoblasts and double labeling were seen only on cortical bone. P3 showed a largely increased bone turnover rate (BFR/BV, + 4.53 SD) and increased mineralization lag time (Mlt, + 3.40 SD). Increased osteoid surface (OS/BS, + 2.03 and + 4.71 SD for P2 and P3) together with a large proportion of lowly mineralized bone area (Trab CaLow, + 2.22 and + 9.81 SD for P2 and P3) and focal mineralization defects were consistent with abnormal mineralization. In all patients, the density and area of osteocyte lacunae in cortical and trabecular bone were similar to healthy adults. The bone tissue characteristics were variable and included decreased trabecular thickness, increased amount of osteoid, and abnormal mineralization which are likely to contribute to bone fragility in patients with APS1.


Asunto(s)
Densidad Ósea , Poliendocrinopatías Autoinmunes , Adulto , Humanos , Masculino , Preescolar , Femenino , Poliendocrinopatías Autoinmunes/genética , Huesos , Hueso Cortical , Matriz Ósea
5.
Wien Med Wochenschr ; 173(13-14): 339-345, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36695943

RESUMEN

X­linked hypophosphatemia (XLH) is a phosphate wasting disorder. Typical serum constellations include low serum phosphate as well as high alkaline phosphatase (ALP) and fibroblast growth factor 23 (FGF-23 ) levels. Adult XLH patients usually suffer from (pseudo)fractures, enthesopathies, impaired mobility, and osteoarthritis. We report the case of a middle-aged woman with clinically mild disease, relatively balanced laboratory values, but bone non-healing of the femur post-surgery. Transiliac bone biopsy revealed pronounced osteomalacia and severe deterioration of bone microstructure. Due to the lack of XLH-typical symptoms, the patient was not substituted with calcitriol and phosphate in adulthood. Thus, laboratory findings and radiological examinations do not necessarily reflect bone metabolism in XLH. Bone biopsies should be considered in unclear cases or prior to surgery in adults with XLH.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Osteomalacia , Persona de Mediana Edad , Femenino , Humanos , Adulto , Raquitismo Hipofosfatémico Familiar/diagnóstico , Fosfatos/metabolismo , Huesos , Osteomalacia/diagnóstico , Biopsia , Factores de Crecimiento de Fibroblastos
6.
J Bone Miner Res ; 38(2): 313-325, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36433915

RESUMEN

The spatial distribution of mineralization density is an important signature of bone growth and remodeling processes, and its alterations are often related to disease. The extracellular matrix of some vertebrate mineralized tissues is known to be perfused by a lacunocanalicular network (LCN), a fluid-filled unmineralized structure that harbors osteocytes and their fine processes and transports extracellular fluid and its constituents. The current report provides evidence for structural and compositional heterogeneity at an even smaller, subcanalicular scale. The work reveals an extensive unmineralized three-dimensional (3D) network of nanochannels (~30 nm in diameter) penetrating the mineralized extracellular matrix of human femoral cortical bone and encompassing a greater volume fraction and surface area than these same parameters of the canaliculi comprising the LCN. The present study combines high-resolution focused ion beam-scanning electron microscopy (FIB-SEM) to investigate bone ultrastructure in 3D with quantitative backscattered electron imaging (qBEI) to estimate local bone mineral content. The presence of nanochannels has been found to impact qBEI measurements fundamentally, such that volume percentage (vol%) of nanochannels correlates inversely with weight percentage (wt%) of calcium. This mathematical relationship between nanochannel vol% and calcium wt% suggests that the nanochannels could potentially provide space for ion and small molecule transport throughout the bone matrix. Collectively, these data propose a reinterpretation of qBEI measurements, accounting for nanochannel presence in human bone tissue in addition to collagen and mineral. Further, the results yield insight into bone mineralization processes at the nanometer scale and present the possibility for a potential role of the nanochannel system in permitting ion and small molecule diffusion throughout the extracellular matrix. Such a possible function could thereby lead to the sequestration or occlusion of the ions and small molecules within the extracellular matrix. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Calcinosis , Calcio , Humanos , Huesos , Hueso Cortical , Densidad Ósea , Minerales , Calcio de la Dieta
7.
Acta Biomater ; 157: 275-287, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36549635

RESUMEN

Osteocytes act as bone mechanosensors, regulators of osteoblast/osteoclast activity and mineral homeostasis, however, knowledge about their functional/morphological changes throughout life is limited. We used quantitative backscattered electron imaging (qBEI) to investigate osteocyte lacunae sections (OLS) as a 2D-surrogate characterizing the osteocytes. OLS characteristics, the density of mineralized osteocyte lacunae (i.e., micropetrotic osteocytes, md.OLS-Density in nb/mm2) and the average degree of mineralization (CaMean in weight% calcium) of cortex and spongiosa were analyzed in transiliac biopsy samples from healthy individuals under 30 (n=59) and over 30 years (n=50) (i.e., before and after the age of peak bone mass, respectively). We found several differences in OLS-characteristics: 1). Inter-individually between the age groups: OLS-Density and OLS-Porosity were reduced by about 20% in older individuals in spongiosa and in cortex versus younger probands (both, p < 0.001). 2). Intra-individually between bone compartments: OLS-Density was higher in the cortex, +18.4%, p < 0.001 for younger and +7.6%, p < 0.05 for older individuals. Strikingly, the most frequent OLS nearest-neighbor distance was about 30 µm in both age groups and at both bone sites revealing a preferential organization of osteocytes in clusters. OLS-Density was negatively correlated with CaMean in both spongiosa and cortex (both, p < 0.001). Few mineralized OLS were found in young individuals along with an increase of md.OLS-Density with age. In summary, this transiliac bone sample analysis of 200000 OLS from 109 healthy individuals throughout lifespan reveals several age-related differences in OLS characteristics. Moreover, our study provides reference data from healthy individuals for different ages to be used for diagnosis of bone abnormalities in diseases. STATEMENT OF SIGNIFICANCE: Osteocytes are bone cells embedded in lacunae within the mineralized bone matrix and have a key role in the bone metabolism and the mineral homeostasis. Not easily accessible, we used quantitative backscattered electron imaging to determine precisely number and shape descriptors of the osteocyte lacunae in 2D. We analyzed transiliac biopsy samples from 109 individuals with age distributed from 2 to 95 years. Compact cortical bone showed constantly higher lacunar density than cancellous bone but the lacunar density in both bone tissue decreased with age before the peak bone mass age at 30 years and stabilized or even increased after this age. This extensive study provides osteocyte lacunae reference data from healthy individuals usable for bone pathology diagnosis.


Asunto(s)
Longevidad , Osteocitos , Humanos , Anciano , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , Osteocitos/patología , Huesos , Matriz Ósea , Densidad Ósea , Biopsia
9.
J Synchrotron Radiat ; 29(Pt 6): 1407-1413, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345748

RESUMEN

X-ray diffraction with high spatial resolution is commonly used to characterize (poly)crystalline samples with, for example, respect to local strain, residual stress, grain boundaries and texture. However, the investigation of highly absorbing samples or the simultaneous assessment of high-Z materials by X-ray fluorescence have been limited due to the utilization of low photon energies. Here, a goniometer-based setup implemented at the P06 beamline of PETRA III that allows for micrometre spatial resolution with a photon energy of 35 keV and above is reported. A highly focused beam was achieved by using compound refractive lenses, and high-precision sample manipulation was enabled by a goniometer that allows up to 5D scans (three rotations and two translations). As experimental examples, the determination of local strain variations in martensitic steel samples with micrometre spatial resolution, as well as the simultaneous elemental distribution for high-Z materials in a thin-film solar cell, are demonstrated. The proposed approach allows users from the materials-science community to determine micro-structural properties even in highly absorbing samples.

10.
J Musculoskelet Neuronal Interact ; 22(3): 305-315, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36046986

RESUMEN

OBJECTIVES: Patients with type-2 diabetes mellitus (T2DM) have increased risk for bone fractures which points towards impaired bone quality. METHODS: We measured bone mineralization density distribution (BMDD) and osteocyte lacunae section (OLS) characteristics based on quantitative backscattered electron images of transiliac biopsy samples from n=26 premenopausal women with T2DM. Outcomes were compared to those from reference cohorts as well as between T2DM subgroups defined by clinical characteristics. RESULTS: Comparison to references did not reveal any differences in BMDD (all p>0.05) but a lowered OLS-density in cancellous bone in T2DM (-14.9%, p<0.001). Neither BMDD nor OLS-characteristics differed in T2DM subgroups defined by HbA1c (<7% versus >7%). The average degree of bone mineralization (CaMean) was higher (0.44 wt%Ca in T2DM, 0.30 wt%Ca in reference) and consistently the calcium concentration between the tetracycline double labels (CaYoung) was higher (0.76 wt%Ca, all p<0.001) in cancellous versus cortical bone. CONCLUSIONS: Our findings suggest that bone matrix mineralization was neither affected by the presence nor by the glycemic control of T2DM in our study cohort. The intra-individual differences between cancellous and cortical bone mineralization gave evidence for differences in the time course of the early mineralization process in these compartments in general.


Asunto(s)
Diabetes Mellitus Tipo 2 , Densidad Ósea , Huesos , Calcificación Fisiológica , Femenino , Humanos , Premenopausia
11.
J Bone Miner Res ; 37(9): 1623-1641, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35949115

RESUMEN

Early-onset osteoporosis (EOOP), characterized by low bone mineral density (BMD) and fractures, affects children, premenopausal women and men aged <50 years. EOOP may be secondary to a chronic illness, long-term medication, nutritional deficiencies, etc. If no such cause is identified, EOOP is regarded primary and may then be related to rare variants in genes playing a pivotal role in bone homeostasis. If the cause remains unknown, EOOP is considered idiopathic. The scope of this review is to guide through clinical and genetic diagnostics of EOOP, summarize the present knowledge on rare monogenic forms of EOOP, and describe how analysis of bone biopsy samples can lead to a better understanding of the disease pathogenesis. The diagnostic pathway of EOOP is often complicated and extensive assessments may be needed to reliably exclude secondary causes. Due to the genetic heterogeneity and overlapping features in the various genetic forms of EOOP and other bone fragility disorders, the genetic diagnosis usually requires the use of next-generation sequencing to investigate several genes simultaneously. Recent discoveries have elucidated the complexity of disease pathogenesis both regarding genetic architecture and bone tissue-level pathology. Two rare monogenic forms of EOOP are due to defects in genes partaking in the canonical WNT pathway: LRP5 and WNT1. Variants in the genes encoding plastin-3 (PLS3) and sphingomyelin synthase 2 (SGMS2) have also been found in children and young adults with skeletal fragility. The molecular mechanisms leading from gene defects to clinical manifestations are often not fully understood. Detailed analysis of patient-derived transiliac bone biopsies gives valuable information to understand disease pathogenesis, distinguishes EOOP from other bone fragility disorders, and guides in patient management, but is not widely available in clinical settings. Despite the great advances in this field, EOOP remains an insufficiently explored entity and further research is needed to optimize diagnostic and therapeutic approaches. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Colágeno Tipo I , Osteoporosis , Densidad Ósea/genética , Huesos/patología , Niño , Colágeno Tipo I/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Osteoporosis/genética , Osteoporosis/patología , Vía de Señalización Wnt , Adulto Joven
12.
J Bone Miner Res ; 37(9): 1665-1678, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35775373

RESUMEN

X-linked hypophosphatemia (XLH) is characterized by excess fibroblast growth factor 23 (FGF23) secretion, renal phosphate wasting, and low 1,25(OH)2 D3 . Adult patients present with osteomalacia, hypomineralized periosteocytic lesions, bone fragility, and pain. Burosumab is a fully human monoclonal FGF23 antibody approved for XLH treatment. UX023-CL304 was an open-label, phase 3 study investigating the effects of burosumab on osteomalacia in adults with XLH, who remained untreated at least 2 years prior enrollment. Here, we present the effect of burosumab on bone material properties. We analyzed transiliac bone biopsy samples from 11 individuals before and after 48 weeks of subcutaneous burosumab treatment (1.0 mg/kg administered every 4 weeks). We used quantitative backscattered electron imaging (qBEI) and Fourier transform infrared imaging (FTIRI) to assess bone mineralization density distribution (BMDD), mineralized bone volume, properties of the organic matrix, and size of periosteocytic lesions. The outcomes were compared with reference values from healthy adults and with four XLH patients either untreated or treated by conventional therapy. Prior to burosumab, the average mineralization in cancellous bone was lower than in healthy reference. CaLow, the fraction of lowly mineralized matrix, and CaHigh, the fraction of highly mineralized matrix, were both elevated resulting in a broad heterogeneity in mineralization (CaWidth). Burosumab resulted in a decrease of CaHigh toward normal range, whereas CaLow and CaWidth remained elevated. The mineralized bone volume was notably increased (+35.9%). The size of the periosteocytic lesions was variable but lower than in untreated XLH patients. FTIRI indicated decreased enzymatic collagen crosslink ratio heterogeneity. In summary, matrix mineralization in XLH is very heterogeneous. Highly mineralized regions represent old bone packets, probably protected from osteoclastic resorption by osteoid seams. The concomitant decrease of highly mineralized matrix, persistence of lowly mineralized matrix, and increase in mineralized bone volume after burosumab suggest a boost in mineralization of preexisting unmineralized or very lowly mineralized matrix, providing a potential explanation for previously observed improved osteomalacia. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Raquitismo Hipofosfatémico Familiar , Adulto , Anticuerpos Monoclonales Humanizados/uso terapéutico , Matriz Ósea , Calcificación Fisiológica , Calcinosis , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Factores de Crecimiento de Fibroblastos , Humanos , Osteomalacia/tratamiento farmacológico
13.
Bone ; 162: 116451, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35654352

RESUMEN

INTRODUCTION: Osteogenesis imperfecta (OI) is a heterogenous group of heritable connective tissue disorders characterized by high bone fragility due to low bone mass and impaired bone material properties. Atypical type VI OI is an extremely rare and severe form of bone dysplasia resulting from a loss-of-function mutation (p.S40L) in IFITM5/BRIL,the causative gene of OI type V and decreased osteoblast secretion of pigment epithelium-derived factor (PEDF), as in OI type VI. It is not yet known which alterations at the material level might lead to such a severe phenotype. We therefore characterized bone tissue at the micrometer level in a novel heterozygous Ifitm5/BRIL p.S42L knock-in murine model at 4 and 8 weeks of age. METHODS: We evaluated in female mice, total body size, femoral and lumbar bone mineral density (BMD) by dual-energy X-ray absorptiometry. In the femoral bone we examined osteoid deposition by light microscopy, assessed bone histomorphometry and mineralization density distribution by quantitative backscattered electron imaging (qBEI). Osteocyte lacunae were examined by qBEI and the osteocyte lacuno-canalicular network by confocal laser scanning microscopy. Vasculature was examined indirectly by qBEI as 2D porosity in cortex, and as 3D porosity by micro-CT in third trochanter. Collagen orientation was examined by second harmonic generation microscopy. Two-way ANOVA was used to discriminate the effect of age and genotype. RESULTS: Ifitm5/BRIL p.S42L female mice are viable, do not differ in body size, fat and lean mass from wild type (WT) littermates but have lower whole-body, lumbar and femoral BMD and multiple fractures. The average and most frequent calcium concentration, CaMean and CaPeak, increased with age in metaphyseal and cortical bone in both genotypes and were always higher in Ifitm5/BRIL p.S42L than in WT, except CaMean in metaphysis at 4 weeks of age. The fraction of highly mineralized bone area, CaHigh, was also increased in Ifitm5/BRIL p.S42L metaphyseal bone at 8 weeks of age and at both ages in cortical bone. The fraction of lowly mineralized bone area, CaLow, decreased with age and was not higher in Ifitm5/BRIL p.S42L, consistent with lack of hyperosteoidosis on histological sections by visual exam. Osteocyte lacunae density was higher in Ifitm5/BRIL p.S42L than WT, whereas canalicular density was decreased. Indirect measurements of vascularity revealed a higher pore density at 4 weeks in cortical bone of Ifitm5/BRIL p.S42L than in WT and at both ages in the third trochanter. Importantly, the proportion of bone area with disordered collagen fibrils was highly increased in Ifitm5/BRIL p.S42L at both ages. CONCLUSIONS: Despite normal skeletal growth and the lack of a collagen gene mutation, the Ifitm5/BRIL p.S42L mouse shows major OI-related bone tissue alterations such as hypermineralization of the matrix and elevated osteocyte porosity. Together with the disordered lacuno-canalicular network and the disordered collagen fibril orientation, these abnormalities likely contribute to overall bone fragility.


Asunto(s)
Modelos Animales de Enfermedad , Osteogénesis Imperfecta , Animales , Densidad Ósea/genética , Huesos/patología , Colágeno , Femenino , Técnicas de Sustitución del Gen , Proteínas de la Membrana/genética , Ratones , Osteogénesis Imperfecta/diagnóstico por imagen , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología
14.
Drug Discov Today ; 27(6): 1706-1715, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35218926

RESUMEN

Tafasitamab (TAF) plus lenalidomide (LEN) is a novel treatment option for patients with relapsed/refractory diffuse large B-cell lymphoma (rrDLBCL) who are not eligible for autologous stem cell transplantation. The initial US/EU approvals for TAF represent precedents because this is the first time that approval of a novel combination therapy was granted based on a pivotal single-arm trial (SAT). Matching real-world data (RWD) helped to disentangle the contribution of individual agents. In this review, we present the TAF development strategy, the prospective incorporation of RWD within the clinical development plan, the corresponding regulatory hurdles of this strategy, and the prior regulatory actions for other cancer drugs that previously incorporated RWD and propensity score matching in EU and US regulatory submissions. We also outline how RWD could further advance and impact orphan drug development.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfoma de Células B Grandes Difuso , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Aprobación de Drogas , Desarrollo de Medicamentos , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/etiología , Producción de Medicamentos sin Interés Comercial , Estudios Prospectivos , Trasplante Autólogo
15.
JBMR Plus ; 5(11): e10537, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34761145

RESUMEN

Pathological variants in SGMS2, encoding sphingomyelin synthase 2 (SMS2), result in a rare autosomal dominant skeletal disorder with cranial doughnut lesions. The disease manifests as early-onset osteoporosis or a more severe skeletal dysplasia with low bone mineral density, frequent fractures, long-bone deformities, and multiple sclerotic cranial lesions. The exact underlying molecular features and skeletal consequences, however, remain elusive. This study investigated bone tissue characteristics in two adult males with a heterozygous SGMS2 mutation p.Arg50* and significant bone fragility. Transiliac bone biopsy samples from both (patient 1: 61 years; patient 2: 29 years) were analyzed by bone histomorphometry, confocal laser scanning microscopy, and quantitative backscattered electron imaging (qBEI). Bone histomorphometry portrayed largely normal values for structural and turnover parameters, but in both patient 1 and patient 2, respectively, osteoid thickness (-1.80 SD, -1.37 SD) and mineralizing surface (-1.03 SD, -2.73 SD) were reduced and osteoid surface increased (+9.03 SD, +0.98 SD), leading to elevated mineralization lag time (+8.16 SD, +4.10 SD). qBEI showed low and heterogeneous matrix mineralization (CaPeak -2.41 SD, -3.72 SD; CaWidth +7.47 SD, +4.41 SD) with a chaotic arrangement of collagenous fibrils under polarized light. Last, osteocyte lacunae appeared abnormally large and round in shape and the canalicular network severely disturbed with short-spanned canaliculi lacking any orderliness or continuity. Taken together, these data underline a central role for functional SMS2 in bone matrix organization and mineralization, lacunocanalicular network, and in maintaining skeletal strength and integrity. These data bring new knowledge on changes in bone histology resulting from abnormal sphingomyelin metabolism and aid en route to better understanding of sphingolipid-related skeletal disorders. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

16.
Sci Rep ; 11(1): 16534, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400706

RESUMEN

The enthesis allows the insertion of tendon into bone thanks to several remarkable strategies. This complex and clinically relevant location often features a thin layer of fibrocartilage sandwiched between tendon and bone to cope with a highly heterogeneous mechanical environment. The main purpose of this study was to investigate whether mineralized fibrocartilage and bone close to the enthesis show distinctive three-dimensional microstructural features, possibly to enable load transfer from tendon to bone. As a model, the Achilles tendon-calcaneus bone system of adult rats was investigated with histology, backscattered electron imaging and micro-computed tomography. The microstructural porosity of bone and mineralized fibrocartilage in different locations including enthesis fibrocartilage, periosteal fibrocartilage and bone away from the enthesis was characterized. We showed that calcaneus bone presents a dedicated protrusion of low porosity where the tendon inserts. A spatially resolved analysis of the trabecular network suggests that such protrusion may promote force flow from the tendon to the plantar ligament, while partially relieving the trabecular bone from such a task. Focusing on the tuberosity, highly specific microstructural aspects were highlighted. Firstly, the interface between mineralized and unmineralized fibrocartilage showed the highest roughness at the tuberosity, possibly to increase failure resistance of a region carrying large stresses. Secondly, fibrochondrocyte lacunae inside mineralized fibrocartilage, in analogy with osteocyte lacunae in bone, had a predominant alignment at the enthesis and a rather random organization away from it. Finally, the network of subchondral channels inside the tuberosity was highly anisotropic when compared to contiguous regions. This dual anisotropy of subchondral channels and cell lacunae at the insertion may reflect the alignment of the underlying collagen network. Our findings suggest that the microstructure of fibrocartilage may be linked with the loading environment. Future studies should characterize those microstructural aspects in aged and or diseased conditions to elucidate the poorly understood role of bone and fibrocartilage in enthesis-related pathologies.


Asunto(s)
Calcificación Fisiológica , Fibrocartílago/ultraestructura , Tendón Calcáneo/fisiología , Tendón Calcáneo/ultraestructura , Animales , Anisotropía , Calcáneo/ultraestructura , Condrocitos/ultraestructura , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Masculino , Microscopía Electrónica de Rastreo , Porosidad , Ratas , Ratas Sprague-Dawley , Estrés Mecánico , Propiedades de Superficie , Soporte de Peso , Microtomografía por Rayos X
17.
Biomedicines ; 9(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202317

RESUMEN

Volume-stable collagen matrices (VSCM) are conductive for the connective tissue upon soft tissue augmentation. Considering that collagen has osteoconductive properties, we have investigated the possibility that the VSCM also consolidates with the newly formed bone. To this end, we covered nine rat calvaria circular defects with a VSCM. After four weeks, histology, histomorphometry, quantitative backscattered electron imaging, and microcomputed tomography were performed. We report that the overall pattern of mineralization inside the VSCM was heterogeneous. Histology revealed, apart from the characteristic woven bone formation, areas of round-shaped hypertrophic chondrocyte-like cells surrounded by a mineralized extracellular matrix. Quantitative backscattered electron imaging confirmed the heterogenous mineralization occurring within the VSCM. Histomorphometry found new bone to be 0.7 mm2 (0.01 min; 2.4 max), similar to the chondrogenic mineralized extracellular matrix with 0.7 mm2 (0.0 min; 4.2 max). Microcomputed tomography showed the overall mineralized tissue in the defect to be 1.6 mm3 (min 0.0; max 13.3). These findings suggest that in a rat cranial defect, VSCM has a limited and heterogeneous capacity to support intramembranous bone formation but may allow the formation of bone via the endochondral route.

18.
JBMR Plus ; 5(6): e10506, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34189389

RESUMEN

Tenofovir is a nucleotide analog reverse-transcriptase inhibitor (NtARTI) used for treatment of chronic hepatitis B and human immunodeficiency virus (HIV). Fanconi syndrome (FS) is a condition affecting the proximal tubules of the kidney, leading to increased passage and impaired reabsorption of various small molecules such as glucose, phosphate, bicarbonate, and amino acids. Tenofovir disoproxil fumarate (TDF) is one of two pro-drugs of tenofovir associated with a greater nephrotoxicity and renal complications such as FS with subsequent osteomalacia, acute kidney injury, and reduction of glomerular filtration rate (GFR) compared with tenofovir alafenamide (TAF). We present the case of a 33-year-old white woman treated with TDF because of chronic hepatitis B infection suffering four atraumatic fractures over the period of 2 years. The patient was taken off the TDF regimen 3 months before presentation. Initial blood and urine samples suggested the presence of TDF-induced osteomalacia, which was confirmed by transiliac bone biopsy and histomorphometry. Moreover, bone mineral density distribution (BMDD) by quantitative backscattered electron imaging (qBEI) analysis showed that approximately 56% of the bone surface was normally mineralized and 44% showed a reduced mineralization consistent with the presence of osteomalacia. The patient made a significant recovery upon cessation of the causative agent. This case report emphasizes the use of bone biopsy, histomorphometry and qBEI in confirming the diagnosis of drug-induced Fanconi syndrome and associated osteomalacia. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

19.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925942

RESUMEN

Osteocytes are terminally differentiated osteoblasts embedded within the bone matrix and key orchestrators of bone metabolism. However, they are generally not characterized by conventional bone histomorphometry because of their location and the limited resolution of light microscopy. OI is characterized by disturbed bone homeostasis, matrix abnormalities and elevated bone matrix mineralization density. To gain further insights into osteocyte characteristics and bone metabolism in OI, we evaluated 2D osteocyte lacunae sections (OLS) based on quantitative backscattered electron imaging in transiliac bone biopsy samples from children with OI type I (n = 19) and age-matched controls (n = 24). The OLS characteristics were related to previously obtained, re-visited histomorphometric parameters. Moreover, we present pediatric bone mineralization density distribution reference data in OI type I (n = 19) and controls (n = 50) obtained with a field emission scanning electron microscope. Compared to controls, OI has highly increased OLS density in cortical and trabecular bone (+50.66%, +61.73%; both p < 0.001), whereas OLS area is slightly decreased in trabecular bone (-10.28%; p = 0.015). Correlation analyses show a low to moderate, positive association of OLS density with surface-based bone formation parameters and negative association with indices of osteoblast function. In conclusion, hyperosteocytosis of the hypermineralized OI bone matrix associates with abnormal bone cell metabolism and might further impact the mechanical competence of the bone tissue.


Asunto(s)
Osteocitos/metabolismo , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Densidad Ósea/fisiología , Desarrollo Óseo/fisiología , Matriz Ósea/patología , Huesos/metabolismo , Niño , Preescolar , Femenino , Humanos , Masculino , Osteoblastos/patología , Osteocitos/patología , Osteocitos/fisiología , Osteogénesis/fisiología
20.
Calcif Tissue Int ; 109(2): 190-202, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33837801

RESUMEN

Quantitative backscattered electron imaging is an established method to map mineral content distributions in bone and to determine the bone mineralization density distribution (BMDD). The method we applied was initially validated for a scanning electron microscope (SEM) equipped with a tungsten hairpin cathode (thermionic electron emission) under strongly defined settings of SEM parameters. For several reasons, it would be interesting to migrate the technique to a SEM with a field emission electron source (FE-SEM), which, however, would require to work with different SEM parameter settings as have been validated for DSM 962. The FE-SEM has a much better spatial resolution based on an electron source size in the order of several 100 nanometers, corresponding to an about [Formula: see text] to [Formula: see text] times smaller source area compared to thermionic sources. In the present work, we compare BMDD between these two types of instruments in order to further validate the methodology. We show that a transition to higher pixel resolution (1.76, 0.88, and 0.57 µm) results in shifts of the BMDD peak and BMDD width to higher values. Further the inter-device reproducibility of the mean calcium content shows a difference of up to 1 wt% Ca, while the technical variance of each device can be reduced to [Formula: see text] wt% Ca. Bearing in mind that shifts in calcium levels due to diseases, e.g., high turnover osteoporosis, are often in the range of 1 wt% Ca, both the bone samples of the patients as well as the control samples have to be measured on the same SEM device. Therefore, we also constructed new reference BMDD curves for adults to be used for FE-SEM data comparison.


Asunto(s)
Huesos , Electrones , Adulto , Densidad Ósea , Calcificación Fisiológica , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...