Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961152

RESUMEN

Sex differences in opioid use, development of opioid used disorder, and relapse behaviors indicate potential variations in opioid effects between men and women. The locomotor and interoceptive effects of opioids play essential roles in opioid addiction, and uncovering the neural mechanisms underlying these effects remain crucial for developing effective treatments. In this study, we examined the dose-dependent effects of morphine on locomotor sensitization and the strength and stability of morphine-context associations in the conditioned place preference (CPP) paradigm in male and female mice, as well as the relationships between these measures. We observed that while CPP is similar between sexes, the locomotor effects of repeated morphine administration and withdrawal differentially contributed to the strength and stability of morphine-context associations. Specifically, females exhibited higher morphine-induced hyperlocomotion than males regardless of the context in which morphine was experienced. Greater locomotor sensitization to morphine in females than males emerged in a dose-dependent manner only when there was sufficient context information for CPP to be established. Additionally, the relationships between the locomotor effects of morphine and the strength and stability of CPP were different in males and females. In females, positive acute and sensitizing locomotor effects of morphine were correlated with a higher CPP score, while the opposite direction of this relationship was found in males. These results suggest that different aspects of the subjective experience of morphine intoxication and withdrawal are important for morphine abuse-related behaviors and highlight the importance of sex-specific responses in the context of opioid addiction.

2.
Alcohol Clin Exp Res (Hoboken) ; 47(8): 1518-1529, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37356964

RESUMEN

BACKGROUND: Since the origin of the C57BL/6 (B6) mouse strain, several phenotypically and genetically distinct B6 substrains have emerged. For example, C57BL/6J mice (B6J) display greater voluntary ethanol consumption and locomotor response to psychostimulants and differences in nucleus accumbens synaptic physiology relative to C57BL/6N (B6N) mice. A non-synonymous serine to phenylalanine point mutation (S968F) in the cytoplasmic FMR1-interacting protein 2 (Cyfip2) gene underlies both the differential locomotor response to cocaine and the accumbal physiology exhibited by these substrains. We examined whether Cyfip2 allelic variation underlies B6 substrain differences in other reward-related phenotypes, such as ethanol intake and wheel-running activity. METHODS: We compared voluntary ethanol consumption, wheel-running, and binge-like ethanol drinking in male and female B6J and B6NJ mice. When substrain differences were observed, additional experiments were performed in two novel mouse models in which the B6N Cyfip2 mutation was either introduced (S968F) into the B6J background or corrected (F968S) via CRISPR/Cas9 technology. RESULTS: B6J consumed significantly more ethanol than B6NJ and allelic variation in Cyfip2 contributed substantially to this substrain difference. In contrast, B6NJ displayed significantly more daily wheel-running than B6J, with Cyfip2 allelic variation playing only a minor role in this substrain difference. Lastly, no substrain differences were observed in binge-like ethanol drinking. CONCLUSIONS: These results contribute to the characterization of behavior-genetic differences between B6 substrains, support previous work indicating that free-choice and binge-like ethanol drinking are dependent on partially distinct genetic networks, and identify a novel phenotypic difference between B6 substrains in wheel-running activity.

3.
Neuropharmacology ; 198: 108748, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34389397

RESUMEN

The paraventricular nucleus of the thalamus (PVT) is a midline thalamic brain region that has emerged as a critical circuit node in the regulation of behaviors across domains of affect and motivation, stress responses, and alcohol- and drug-related behaviors. The influence of the PVT in this diverse array of behaviors is a function of its ability to integrate and convey information about salience and valence through its connections with cortical, hypothalamic, hindbrain, and limbic brain regions. While understudied to date, recent studies suggest that several PVT efferents play critical and complex roles in drug and alcohol-related phenotypes. The PVT is also the site of signaling for many neuropeptides released from the synaptic terminals of distal inputs and local neuropeptidergic neurons within. While there is some evidence that neuropeptides including orexin, neurotensin, substance P, and cocaine and amphetamine-related transcript (CART) signal in the PVT to regulate alcohol/drug intake and reinstatement, there remains an overall lack of understanding of the roles of neuropeptides in the PVT in addiction-related behaviors, especially in a circuit-specific context. In this review, we present the current status of preclinical research regarding PVT circuits and neuropeptide modulation of the PVT in three aspects of the addiction cycle: reward/acquisition, withdrawal, and relapse, with a focus on alcohol, opioids (particularly morphine), and psychostimulants (particularly cocaine). Given the PVT's unique position within the broader neural landscape, we further discuss the potential ways in which neuropeptides may regulate these behaviors through their actions upon PVT circuits. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.


Asunto(s)
Alcoholismo/fisiopatología , Red Nerviosa/fisiopatología , Neuropéptidos/metabolismo , Núcleo Hipotalámico Paraventricular/fisiopatología , Trastornos Relacionados con Sustancias/fisiopatología , Animales , Humanos , Trastornos Relacionados con Opioides/fisiopatología , Recompensa
4.
J Biol Rhythms ; 36(2): 146-159, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33357136

RESUMEN

"Non-image-forming" (NIF) effects of light are mediated primarily by a subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment, melanopsin (OPN4). These NIF functions include circadian entrainment, pupillary reflexes, and photic effects on sleep, mood, and cognition. We recently reported that mice of multiple genotypes exhibit reduced voluntary ethanol intake under both constant darkness (DD) and constant light (LL) relative to standard light-dark (LD) conditions. In the present study, we sought to determine whether these effects are mediated by melanopsin-expressing ipRGCs and their potential relationship to photic effects on the circadian system. To this end, we examined the effects of environmental lighting regimen on both ethanol intake and circadian activity rhythms in a genetically engineered mouse model (Opn4aDTA/aDTA) in which melanopsin expression is completely blocked while ipRGCs are progressively ablated due to activation of attenuated diphtheria toxin A (aDTA) transgene under the control of the Opn4 promoter. As expected from previous studies, Opn4aDTA/aDTA mice displayed dramatic attenuation of circadian photosensitivity, but surprisingly, showed identical suppression of ethanol intake under both DD and LL as that seen in controls. These results demonstrate that the effects of lighting regimen on voluntary ethanol intake are independent of melanopsin-expressing ipRGCs and ipRGC-mediated photic effects on the circadian system. Rather, these effects are likely mediated by classical retinal photoreceptors and central pathways.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Etanol/administración & dosificación , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de la radiación , Opsinas de Bastones/metabolismo , Animales , Femenino , Iluminación , Masculino , Ratones , Opsinas de Bastones/deficiencia , Opsinas de Bastones/genética
5.
Alcohol Clin Exp Res ; 44(10): 2019-2030, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32862442

RESUMEN

BACKGROUND: In alcohol-dependent individuals, acute alcohol withdrawal results in severe physiological disruption, including potentially lethal central nervous system hyperexcitability. Although benzodiazepines successfully mitigate such symptoms, this treatment does not significantly reduce recidivism rates in postdependent individuals. Instead, persistent affective disturbances that often emerge weeks to months after initial detoxification appear to play a significant role in relapse risk; however, it remains unclear whether genetic predispositions contribute to their emergence, severity, and/or duration. Interestingly, significant genotypic and phenotypic differences have been observed among distinct C57BL/6 (B6) substrains, and, in particular, C57BL/6J (B6J) mice have been found to reliably exhibit higher voluntary ethanol (EtOH) intake and EtOH preference compared to several C57BL/6N (B6N)-derived substrains. To date, however, B6 substrains have not been directly compared on measures of acute withdrawal severity or affective-behavioral disruption during extended abstinence. METHODS: Male and female B6J and B6NJ mice were exposed to either a 7-day chronic intermittent EtOH vapor (CIE) protocol or to ordinary room air in inhalation chambers. Subsequently, blood EtOH concentrations and handling-induced convulsions were evaluated during acute withdrawal, and mice were then tested weekly for affective behavior on the sucrose preference test, light-dark box test, and forced swim test throughout 4 weeks of (forced) abstinence. RESULTS: Despite documented differences in voluntary EtOH intake between these substrains, we found little evidence for substrain differences in either acute withdrawal or long-term abstinence between B6J and B6NJ mice. CONCLUSIONS: In B6J and B6NJ mice, both the acute and long-term sequelae of EtOH withdrawal are dependent on largely nonoverlapping gene networks relative to those underlying voluntary EtOH drinking.


Asunto(s)
Afecto , Abstinencia de Alcohol/psicología , Afecto/efectos de los fármacos , Animales , Depresión/etiología , Depresión/genética , Depresión/psicología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Síndrome de Abstinencia a Sustancias/genética , Síndrome de Abstinencia a Sustancias/psicología
6.
Alcohol ; 83: 37-46, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31175946

RESUMEN

Seasonal variations in photoperiod are associated with alterations in human mood and behavior. Similarly, manipulation of the environmental lighting regimen can exert pronounced effects on affective behavior in experimental animals. These observations may be due, in part, to light-induced alterations in circadian rhythms, but it seems likely that other, non-circadian factors also contribute. Several studies have shown that voluntary alcohol (ethanol) consumption can be affected by lighting conditions in rodents, suggesting that photoperiodic variation may account for seasonal and geographic patterns of human alcohol consumption. Nevertheless, the existing animal data are somewhat inconsistent, and little work in this area has been performed in mice. In the present study, we monitored circadian activity rhythms and voluntary ethanol consumption under standard 12:12 light-dark (LD) cycles, and in constant light (LL) and constant darkness (DD). Experiment 1 employed male C3H/He inbred mice, while Experiment 2 employed males and females from a genetically heterogeneous line (WSC). Relative to LD conditions, ethanol intake and ethanol preference were reduced under both LL and DD in both experiments. Because similar effects were seen in both LL and DD, neither circadian disruption nor a classical photoperiodic mechanism are likely to account fully for these findings. Instead, we suggest that the absence of circadian entrainment may function as a mild stressor, resulting in reduced ethanol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Ritmo Circadiano/fisiología , Animales , Oscuridad , Femenino , Luz , Masculino , Ratones , Ratones Endogámicos C3H , Actividad Motora/fisiología , Fotoperiodo
7.
Alcohol Clin Exp Res ; 43(7): 1478-1485, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31046129

RESUMEN

BACKGROUND: While the acute alcohol withdrawal syndrome has been well characterized both in human clinical studies and in experimental animals, much less is known regarding long-term affective disturbances that can sometimes persist during protracted abstinence. Nevertheless, since relapse often occurs long after acute detoxification and may be predicted by persistent affective disruption, a better understanding of the long-term behavioral consequences of prior alcohol dependence may lead to improved strategies for relapse prevention. METHODS: Male and female Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant mice from the second selection replicate (WSP-2, WSR-2) were exposed to a 10-day chronic-intermittent ethanol vapor protocol (CIE) or plain air and then tested repeatedly on the sucrose preference test (SPT), marble burying test (MBT), and the light-dark box test (LDT) over 7 weeks of (forced) abstinence. RESULTS: While WSP and WSR mice differed significantly on tests of anxiety-like behavior (LDT, MBT), we found little evidence for long-term affective disruption following CIE in either line. The major exception was in the LDT, in that WSP but not WSR mice displayed longer latencies to enter the light compartment following CIE relative to air-controls. CONCLUSIONS: Selective breeding for acute withdrawal severity has resulted in differences in anxiety-like behavior between WSP and WSR mice. In contrast, however, genes contributing to the severity of acute withdrawal convulsions appear to have little overlap with those predisposing to affective disruption during long-term abstinence.


Asunto(s)
Afecto , Abstinencia de Alcohol , Convulsiones por Abstinencia de Alcohol/complicaciones , Convulsiones por Abstinencia de Alcohol/psicología , Administración por Inhalación , Convulsiones por Abstinencia de Alcohol/genética , Alcoholismo , Animales , Ansiedad/psicología , Peso Corporal/efectos de los fármacos , Depresores del Sistema Nervioso Central/administración & dosificación , Depresores del Sistema Nervioso Central/farmacología , Oscuridad , Etanol/administración & dosificación , Etanol/farmacología , Femenino , Preferencias Alimentarias , Luz , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...