Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Syst ; 14(4): 285-301.e4, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37080163

RESUMEN

Recent advances in spatial transcriptomics (STs) enable gene expression measurements from a tissue sample while retaining its spatial context. This technology enables unprecedented in situ resolution of the regulatory pathways that underlie the heterogeneity in the tumor as well as the tumor microenvironment (TME). The direct characterization of cellular co-localization with spatial technologies facilities quantification of the molecular changes resulting from direct cell-cell interaction, as it occurs in tumor-immune interactions. We present SpaceMarkers, a bioinformatics algorithm to infer molecular changes from cell-cell interactions from latent space analysis of ST data. We apply this approach to infer the molecular changes from tumor-immune interactions in Visium spatial transcriptomics data of metastasis, invasive and precursor lesions, and immunotherapy treatment. Further transfer learning in matched scRNA-seq data enabled further quantification of the specific cell types in which SpaceMarkers are enriched. Altogether, SpaceMarkers can identify the location and context-specific molecular interactions within the TME from ST data.


Asunto(s)
Algoritmos , Microambiente Tumoral , Comunicación Celular , Biología Computacional , Perfilación de la Expresión Génica
3.
Metallomics ; 5(8): 1025-30, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23775459

RESUMEN

While there has been extensive interest in the use of boron isotope ratios as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the high (0.4 mM) concentration and the depth-independent (conservative or non-nutrient-like) concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the modern ocean. Here we report that boron affects the expression of a number of protein and genes in the "algal-associated" Gram-negative marine bacterium Marinobacter algicola DG893. Most intriguingly, a number of these proteins and genes are related to iron uptake. In a recent separate publication we have shown that boron regulates one such iron transport related protein, i.e. the periplasmic iron binding protein FbpA via a direct interaction of the metalloid with this protein. Here we show that a number of other iron uptake related genes are also affected by boron but in the opposite way i.e. they are up-regulated. We propose that the differential effect of boron on FbpA expression relative to other iron transport related genes is a result of an interaction between boron and the global iron regulatory protein Fur.


Asunto(s)
Boro/química , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Marinobacter/genética , Marinobacter/metabolismo , Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , Proteínas de Unión Periplasmáticas/metabolismo , Proteoma , Proteínas Represoras/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
J Inorg Biochem ; 116: 188-94, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23041362

RESUMEN

The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies being distinguished: strategy I involves the induction of a Fe(III)-chelate reductase (ferrireductase) along with Fe(II) or Fe(III) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine, plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the green alga Tetraselmis suecica. Short term radio-iron uptake studies indicate that iron is taken up by Tetraselmis in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor and other studies it appears that a reductive-oxidative pathway such as that found in yeast and the green alga Chlamydomonas reinhardtii is likely. Upon long term exposure to (57)Fe we have been able, using a combination of Mössbauer and X-ray absorption spectroscopies, to identify three metabolites. The first exhibits Mössbauer parameters typical of a [Fe(4)S(4)](2+) cluster and which accounts for approximately 10% of the total intracellular iron pool. The second displays a spectrum typical of a [Fe(II)O(6)] system accounting for approximately 2% of the total pool. The largest component (ca. 85+%) consists of polymeric iron-oxo mineral species with parameters between that of the crystalline ferrihydrite core of animal ferritins and the amorphous hydrated ferric phosphate of bacterial and plant ferritins.


Asunto(s)
Chlorophyta/metabolismo , Hierro/metabolismo , Biología Marina , Transporte Biológico , Espectroscopía de Mossbauer , Espectroscopía de Absorción de Rayos X
5.
Metallomics ; 4(11): 1160-6, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23011578

RESUMEN

Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving soil acidification and induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the coccolithophore Emiliania huxleyi. Short term radio-iron uptake studies indicate that iron is taken up by Emiliania in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor studies it appears that iron is taken up directly as Fe(iii). However if a reductive step is involved the Fe(II) must not be accessible to the external environment. Upon long term exposure to (57)Fe we have been able, using a combination of Mössbauer and XAS spectroscopies, to identify a single metabolite which displays spectral features similar to the phosphorus-rich mineral core of bacterial and plant ferritins.


Asunto(s)
Haptophyta/química , Haptophyta/metabolismo , Hierro/química , Hierro/metabolismo , Transporte Biológico , Haptophyta/enzimología , Isótopos de Hierro/química , Isótopos de Hierro/metabolismo , Proteínas de Unión a Hierro , Proteínas de la Membrana , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...