Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Intervalo de año de publicación
2.
Plant Dis ; 104(6): 1584-1588, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32357120

RESUMEN

'Candidatus Liberibacter spp.' are associated with the most devastating disease of citrus Huanglongbing (HLB). In previous work, we established an in situ tissue print method for the detection of 'Ca. L. asiaticus' (CLas) in sweet orange. We optimized the protocol by preincubation of the anti-Omp antibody with 5% (w/v) extract of healthy rough lemon. This simple process eliminated cross reactions between citrus and the antibody. The optimized protocol enhanced the application of the polyclonal antibody, and we demonstrate detection of CLas from all parts of the world, including isolates from Japan, Thailand, Vietnam, Pakistan, Saudi Arabia, Brazil, the United States, and a selection of strains from China representative of the diversity extant there. The assay also was used to detect four isolates of 'Ca. L. africanus' (CLaf) representative of the diversity present in South Africa. The corresponding outer membrane genes of representative isolates were cloned and sequenced. The coding sequences were highly conserved, and isolates of CLas and CLaf shared 53.8 to 55.9% identity between species at the amino acid level. The optimized protocol is efficient for recognition of both CLas and CLaf in phloem cells of different citrus tissues regardless of geographic origin of the HLB samples. The method is simple and scales well to match the urgent need for accurate, sensitive, and high-throughput screening of HLB bacteria, and may play an important role especially for plant inspection and quarantine programs.


Asunto(s)
Citrus , Brasil , China , Japón , Pakistán , Enfermedades de las Plantas , Arabia Saudita , Sudáfrica , Vietnam
3.
Phytopathology ; 110(1): 106-120, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31600117

RESUMEN

The genus Dichorhavirus contains viruses with bipartite, negative-sense, single-stranded RNA genomes that are transmitted by flat mites to hosts that include orchids, coffee, the genus Clerodendrum, and citrus. A dichorhavirus infecting citrus in Mexico is classified as a citrus strain of orchid fleck virus (OFV-Cit). We previously used RNA sequencing technologies on OFV-Cit samples from Mexico to develop an OFV-Cit-specific reverse transcription PCR (RT-PCR) assay. During assay validation, OFV-Cit-specific RT-PCR failed to produce an amplicon from some samples with clear symptoms of OFV-Cit. Characterization of this virus revealed that dichorhavirus-like particles were found in the nucleus. High-throughput sequencing of small RNAs from these citrus plants revealed a novel citrus strain of OFV, OFV-Cit2. Sequence comparisons with known orchid and citrus strains of OFV showed variation in the protein products encoded by genome segment 1 (RNA1). Strains of OFV clustered together based on host of origin, whether orchid or citrus, and were clearly separated from other dichorhaviruses described from infected citrus in Brazil. The variation in RNA1 between the original (now OFV-Cit1) and the new (OFV-Cit2) strain was not observed with genome segment 2 (RNA2), but instead, a common RNA2 molecule was shared among strains of OFV-Cit1 and -Cit2, a situation strikingly similar to OFV infecting orchids. We also collected mites at the affected groves, identified them as Brevipalpus californicus sensu stricto, and confirmed that they were infected by OFV-Cit1 or with both OFV-Cit1 and -Cit2. OFV-Cit1 and -Cit2 have coexisted at the same site in Toliman, Queretaro, Mexico since 2012. OFV strain-specific diagnostic tests were developed.


Asunto(s)
Citrus , Genoma Viral , Rhabdoviridae , Animales , Brasil , Citrus/virología , Genoma Viral/genética , México , Enfermedades de las Plantas/virología , ARN Viral , Virus Reordenados/genética , Rhabdoviridae/genética
4.
BMC Genomics ; 20(1): 969, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31829190

RESUMEN

BACKGROUND: Citrus blight is a very important progressive decline disease of commercial citrus. The etiology is unknown, although the disease can be transmitted by root grafts, suggesting a viral etiology. Diagnosis is made by demonstrating physical blockage of xylem cells that prevents the movement of water. This test was used to identify symptomatic trees from four commercial groves in Florida. Total RNA extracts of phloem-enriched scaffold root tissues were prepared from seven trees that failed to take up water and from one healthy tree. These RNA extracts were used for transcriptomic analyses using paired end RNA-Seq from an Illumina 2500 system. The expression of transcripts annotated as polyprotein of citrus endogenous pararetrovirus were estimated by both RT-qPCR and RNA-Seq. RESULTS: Transcripts from seven RNA-Seq libraries from trees affected by citrus blight were compared to a control tree. 129-148 million RNA fragments (two paired-end reads/fragment) were generated per library and were mapped to the sweet orange reference genome. In response to citrus blight stress, genes encoding aquaporins, proteins with water channel activity and several cellulose synthase genes were down-regulated, whereas genes involved in lignin and glucosinolate biosynthesis were up-regulated. Transcripts encoding proteins in pathways of carbohydrate metabolism, nucleotide synthesis, signaling, hormone metabolism, secondary metabolism, transport, and biotic stress pathways were overwhelmingly down regulated in all libraries. CONCLUSION: Reduced water intake and xylem plugging were observed in the trees tested and the changes in their transcriptome were analyzed. Plants adapted to reduced water flow by regulating primary and secondary metabolism, nuclear transport and hormone associated pathways. The patterns of energy generation, transcription, translation and protein degradation were consistent with irreversible decline. The down regulation of cellulose synthase transcripts and up regulation of transcripts related to lignin production likely lead to an imbalance in the pathways leading to wood formation, and may lead to the blockage of the xylem vessels seen as the cardinal symptom of citrus blight. Transcripts of a pararetrovirus were elevated in the transcriptome of roots used in this study.


Asunto(s)
Citrus/fisiología , Perfilación de la Expresión Génica/métodos , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Citrus/microbiología , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Enfermedades de las Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Metabolismo Secundario , Análisis de Secuencia de ARN , Agua/metabolismo , Xilema/metabolismo
5.
Genome Announc ; 6(4)2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29371356

RESUMEN

The complete nucleotide sequence of a recently discovered Florida (FL) isolate of hibiscus-infecting cilevirus (HiCV) was determined by Sanger sequencing. The movement and coat protein gene sequences of the HiCV-FL isolate are more divergent than other genes of the previously sequenced HiCV-HI (Hawaii) isolate.

6.
BMC Genomics ; 18(1): 837, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089035

RESUMEN

BACKGROUND: Citrus worldwide is threatened by huanglongbing (HLB) and tristeza diseases caused by 'Candidatus Liberibacter asiaticus' (CaLas) and Citrus tristeza virus (CTV). Although the pathogens are members of the α-proteobacteria and Closteroviridae, respectively, both are restricted to phloem cells in infected citrus and are transmitted by insect vectors. The response of sweet orange to single infection by either of these two pathogens has been characterized previously by global gene expression analysis. But because of the ubiquity of these pathogens where the diseases occur, co-infection by both pathogens is very common and could lead to increased disease severity based on synergism. We therefore co-inoculated sweet orange trees with CaLas and either a mild or a severe strain of CTV, and measured changes of gene expression in host plants. RESULTS: In plants infected with CaLas-B232, the overall alteration in gene expression was much greater in plants co-inoculated with the severe strain of CTV, B6, than when co-infected with the mild strain of CTV, B2. Plants co-infected with CaLas-B232 and either strain of CTV died but trees co-infected with CTV-B2 survived much longer than those co-infected with CTV-B6. Many important pathways were perturbed by both CTV-B2/CaLas-B232 and/or CTV-B6/CaLas-B232, but always more severely by CTV-B6/CaLas-B232. Genes related to cell wall modification and metal transport responded differently to infection by the pathogens in combination than by the same pathogens singly. The expressions of genes encoding phloem proteins and sucrose loading proteins were also differentially altered in response to CTV-B2 or CTV-B6 in combination with CaLas-B232, leading to different phloem environments in plants co-infected by CaLas and mild or severe CTV. CONCLUSIONS: Many host genes were expressed differently in response to dual infection as compared to single infections with the same pathogens. Interactions of the pathogens within the host may lead to a better or worse result for the host plant. CTV-B6 may exert a synergistic effect with CaLas-B232 in weakening the plant; on the other hand, the responses activated by the mild strain CTV-B2 may provide some beneficial effects against CaLas-B232 by increasing the defense response of the host.


Asunto(s)
Alphaproteobacteria , Citrus sinensis/genética , Citrus sinensis/microbiología , Citrus sinensis/virología , Closterovirus , Coinfección , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Transcriptoma , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Relojes Circadianos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas , Fenotipo , Fotosíntesis , Reproducibilidad de los Resultados , Ribosomas/genética , Ribosomas/metabolismo
7.
Front Plant Sci ; 8: 1419, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912786

RESUMEN

Citrus tristeza is one of the most destructive citrus diseases and is caused by the phloem-restricted Closterovirus, Citrus tristeza virus. Mild strain CTV-B2 does not cause obvious symptoms on indicators whereas severe strain CTV-B6 causes symptoms, including stem pitting, cupping, yellowing, and stiffening of leaves, and vein corking. Our laboratory has previously characterized changes in transcription in sweet orange separately infected with CTV-B2 and CTV-B6. In the present study, transcriptome analysis of Citrus sinensis in response to double infection by CTV-B2 and CTV-B6 was carried out. Four hundred and eleven transcripts were up-regulated and 356 transcripts were down-regulated prior to the onset of symptoms. Repressed genes were overwhelmingly associated with photosynthesis, and carbon and nucleic acid metabolism. Expression of genes related to the glycolytic, oxidative pentose phosphate (OPP), tricarboxylic acid cycle (TCA) pathways, tetrapyrrole synthesis, redox homeostasis, nucleotide metabolism, protein synthesis and post translational protein modification and folding, and cell organization were all reduced. Ribosomal composition was also greatly altered in response to infection by CTV-B2/CTV-B6. Genes that were induced were related to cell wall structure, secondary and hormone metabolism, responses to biotic stress, regulation of transcription, signaling, and secondary metabolism. Transport systems dedicated to metal ions were especially disturbed and ZIPs (Zinc Transporter Precursors) showed different expression patterns in response to co-infection by CTV-B2/CTV-B6 and single infection by CTV-B2. Host plants experienced root decline that may have contributed to Zn, Fe, and other nutrient deficiencies. Though defense responses, such as, strengthening of the cell wall, alteration of hormone metabolism, secondary metabolites, and signaling pathways, were activated, these defense responses did not suppress the spread of the pathogens and the development of symptoms. The mild strain CTV-B2 did not provide a useful level of cross-protection to citrus against the severe strain CTV-B6.

8.
Protein Expr Purif ; 139: 36-42, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28732682

RESUMEN

The citrus disease huanglongbing (HLB), which is caused by 'Candidatus Liberibacter asiaticus' (CaLas), is one of the most devastating pathogens of citrus, and with no effective method of control, poses a serious threat to citrus production throughout the world. In a previous study we described the production of single chain antibodies against several CaLas proteins that provide the basis for efficient and accurate detection of CaLas in citrus tissues. The isolation of a sufficient amount of purified antigen is a key step in the production of functional antibodies. The current report details purification procedures for six protein antigens used to select recombinant and produce polyclonal antibodies. These proteins include a flagellar biosynthesis protein (FlhA), a dinucleoside polyphosphate hydrolase (InvA), a portion of the major outer membrane protein (OmpA), a component of type IV pilus (CapB), the polysialic acid capsule expression protein (KpsA) and the outer membrane efflux protein (TolC). Results of purification under completely native or denatured conditions were not satisfactory. Therefore different hybrid purification conditions were optimized for each of the different proteins. The results of bioinformatic analysis also indicated that the six proteins contained a great diversity of potential antigenic epitopes, which varied in number, and that the antigenic clusters were not uniformly distributed throughout the proteins. The purified proteins are useful for the development of highly specific antibodies capable of differentiating specific strains of Liberibacter.


Asunto(s)
Alphaproteobacteria/genética , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Clonación Molecular , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Epítopos/metabolismo , Escherichia coli/genética , Enfermedades de las Plantas/microbiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
Sci Rep ; 7: 46467, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28418002

RESUMEN

'Candidatus Liberibacter asiaticus' (CaLas), associated with citrus Huanglongbing (HLB), is a non culturable member of the α-proteobacteria. In this study serologically based methods for the detection of CaLas were developed. An anti-outer membrane protein A (OmpA) polyclonal antibody previously produced (in our laboratory) was highly effective for the detection of CaLas from citrus tissues in a simple tissue printing format. The antibody was also used to capture bacteria from periwinkle extracts. About 80% of all field samples analyzed tested positive with both immune tissue printing and qPCR; whereas 95% were positive with at least one of these two methods. When asymptomatic citrus tissues were tested, the tissue printing method gave a higher rate of detection (83%) than the qPCR method (64%). This is consistent with a lower concentration of CaLas DNA, but a higher proportion of viable cells, in the asymptomatic tissues. The immune tissue printing method also highlights the detail of the spatial distribution of 'Ca. Liberibacter asiaticus' in diseased citrus tissues. Both the immune capture PCR and immune tissue printing methods offer the advantages of low cost, high throughput, ease of scaling for multiple samples and simplicity over current PCR-based methods for the detection of 'Ca. Liberibacter asiaticus'.


Asunto(s)
Anticuerpos Antibacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/inmunología , Citrus/microbiología , Enfermedades de las Plantas/microbiología , Rhizobiaceae/inmunología , Citrus/inmunología , ADN Bacteriano/análisis , Reacción en Cadena de la Polimerasa , Rhizobiaceae/genética , Sensibilidad y Especificidad , Distribución Tisular
10.
Sci Rep ; 6: 29272, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27381064

RESUMEN

We describe experiments with antibodies against 'Candidatus Liberibacter asiaticus used to detect the pathogen in infected plants. We used scFv selected to bind epitopes exposed on the surface of the bacterium in tissue prints, with secondary monoclonal antibodies directed at a FLAG epitope included at the carboxyl end of the scFv. Unexpectedly, the anti-FLAG secondary antibody produced positive results with CaLas diseased samples when the primary scFv were not used. The anti-FLAG monoclonal antibody (Mab) also identified plants infected with other vascular pathogens. We then identified a paralogous group of secreted chaperone proteins in the HSP-90 family that contained the amino acid sequence DDDDK identical to the carboxy-terminal sequence of the FLAG epitope. A rabbit polyclonal antibody against one of the same epitopes combined with a goat anti-rabbit secondary antibody produced very strong purple color in individual phloem cells, as expected for this pathogen. These results were entirely specific for CaLas-infected citrus. The simplicity, cost and ability to scale the tissue print assay makes this an attractive assay to complement PCR-based assays currently in use. The partial FLAG epitope may itself be useful as a molecular marker for the rapid screening of citrus plants for the presence of vascular pathogens.


Asunto(s)
Antígenos Bacterianos/análisis , Citrus/microbiología , Interacciones Huésped-Patógeno , Chaperonas Moleculares/análisis , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/análisis , Rhizobiaceae/aislamiento & purificación , Anticuerpos Antibacterianos/metabolismo , Cromatografía Liquida , Inmunoensayo/métodos , Rhizobiaceae/inmunología , Anticuerpos de Cadena Única/metabolismo , Coloración y Etiquetado/métodos , Espectrometría de Masas en Tándem
11.
BMC Genomics ; 17: 349, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27169471

RESUMEN

BACKGROUND: Huanglongbing (HLB) and tristeza, are diseases of citrus caused by a member of the α-proteobacteria, 'Candidatus Liberibacter asiaticus' (CaLas), and Citrus tristeza virus (CTV) respectively. HLB is a devastating disease, but CTV strains vary from very severe to very mild. Both CaLas and CTV are phloem-restricted. The CaLas-B232 strain and CTV-B6 cause a wide range of severe and similar symptoms. The mild strain CTV-B2 doesn't induce significant symptoms or damage to plants. RESULTS: Transcriptome profiles obtained through RNA-seq revealed 611, 404 and 285 differentially expressed transcripts (DETs) after infection with CaLas-B232, CTV-B6 and CTV-B2. These DETs were components of a wide range of pathways involved in circadian rhythm, cell wall modification and cell organization, as well as transcription factors, transport, hormone response and secondary metabolism, signaling and stress response. The number of transcripts that responded to both CTV-B6 and CaLas-B232 was much larger than the number of transcripts that responded to both strains of CTV or to both CTV-B2 and CaLas-B232. A total of 38 genes were assayed by RT-qPCR and the correlation coefficients between Gfold and RT-qPCR were 0.82, 0.69, 0.81 for sweet orange plants infected with CTV-B2, CTV-B6 and CaLas-B232, respectively. CONCLUSIONS: The number and composition of DETs reflected the complexity of symptoms caused by the pathogens in established infections, although the leaf tissues sampled were asymptomatic. There were greater similarities between the sweet orange in response to CTV-B6 and CaLas-B232 than between the two CTV strains, reflecting the similar physiological changes caused by both CTV-B6 and CaLas-B232. The circadian rhythm system of plants was perturbed by all three pathogens, especially by CTV-B6, and the ion balance was also disrupted by all three pathogens, especially by CaLas-B232. Defense responses related to cell wall modification, transcriptional regulation, hormones, secondary metabolites, kinases and stress were activated by all three pathogens but with different patterns. The transcriptome profiles of Citrus sinensis identified host genes whose expression is affected by the presence of a pathogen in the phloem without producing symptoms (CTV-B2), and host genes whose expression leads to induction of symptoms in the plant (CTV-B6, CaLas-B232).


Asunto(s)
Citrus sinensis/microbiología , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Análisis de Secuencia de ARN/métodos , Alphaproteobacteria/fisiología , Citrus sinensis/genética , Citrus sinensis/virología , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Virus de Plantas/fisiología
12.
Phytopathology ; 105(9): 1277-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25961338

RESUMEN

Leprosis refers to two diseases of citrus that present similar necrotic local lesions, often surrounded by chlorotic haloes on citrus. Two distinct viruses are associated with this disease, one that produces particles primarily in the nucleus of infected plant cells (Citrus leprosis virus nuclear type [CiLV-N]; Dichorhavirus) and another type that produces particles in the cytoplasm of infected plant cells (Citrus leprosis virus cytoplasmic type [CiLV-C]; Cilevirus). Both forms are transmitted by Brevipalpid mites and have bipartite, single-stranded, RNA genomes. CiLV-C and CiLV-N are present in South and Central America and as far north as parts of Mexico. Although leprosis disease was originally described from Florida, it disappeared from there in the 1960s. The United States Department of Agriculture-Agricultural Research Service maintains preserved citrus specimens identified at inspection stations 50 or more years ago with symptoms of citrus leprosis. We isolated RNA from these samples and performed degradome sequencing. We obtained nearly full-length genome sequences of both a typical CiLV-C isolate intercepted from Argentina in 1967 and a distinct CiLV-N isolate obtained in Florida in 1948. The latter is a novel form of CiLV-N, not known to exist anywhere in the world today. We have also documented the previously unreported presence of CiLV-N in Mexico in the mid-20th century.


Asunto(s)
Citrus/virología , Genoma Viral/genética , Ácaros/virología , Enfermedades de las Plantas/virología , Virus de Plantas/aislamiento & purificación , Animales , Argentina , Secuencia de Bases , Florida , Frutas/virología , México , Datos de Secuencia Molecular , Filogenia , Virus de Plantas/clasificación , Virus de Plantas/genética , ARN Viral/química , ARN Viral/genética , Análisis de Secuencia de ARN
13.
PLoS One ; 10(5): e0123939, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946013

RESUMEN

'Candidatus Liberibacter asiaticus' (CaLas), a non-cultured member of the α-proteobacteria, is the causal agent of citrus Huanglongbing (HLB). Due to the difficulties of in vitro culture, antibodies against CaLas have not been widely used in studies of this pathogen. We have used an anti-OmpA polyclonal antibody based direct tissue blot immunoassay to localize CaLas in different citrus tissues and in periwinkle leaves. In citrus petioles, CaLas was unevenly distributed in the phloem sieve tubes, and tended to colonize in phloem sieve tubes on the underside of petioles in preference to the upper side of petioles. Both the leaf abscission zone and the junction of the petiole and leaf midrib had fewer CaLas bacteria compared to the main portions of the petiole and the midribs. Colonies of CaLas in phloem sieve tubes were more frequently found in stems with symptomatic leaves than in stems with asymptomatic leaves with an uneven distribution pattern. In serial sections taken from the receptacle to the peduncle, more CaLas were observed in the peduncle sections adjacent to the stem. In seed, CaLas was located in the seed coat. Many fewer CaLas were found in the roots, as compared to the seeds and petioles when samples were collected from trees with obvious foliar symptoms. The direct tissue blot immuno assay was adapted to whole periwinkle leaves infected by CaLas. The pathogen was distributed throughout the lateral veins and the results were correlated with results of qPCR. Our data provide direct spatial and anatomical information for CaLas in planta. This simple and scalable method may facilitate the future research on the interaction of CaLas and host plant.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Citrus sinensis/microbiología , Helicobacter/aislamiento & purificación , Vinca/microbiología , Anticuerpos Antibacterianos/inmunología , Immunoblotting , Floema/microbiología , Hojas de la Planta/microbiología , Semillas/microbiología
14.
Phytopathology ; 105(7): 1013-25, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25775106

RESUMEN

Citrus leprosis complex is an emerging disease in the Americas, associated with two unrelated taxa of viruses distributed in South, Central, and North America. The cytoplasmic viruses are Citrus leprosis virus C (CiLV-C), Citrus leprosis virus C2 (CiLV-C2), and Hibiscus green spot virus 2, and the nuclear viruses are Citrus leprosis virus N (CiLV-N) and Citrus necrotic spot virus. These viruses cause local lesion infections in all known hosts, with no natural systemic host identified to date. All leprosis viruses were believed to be transmitted by one species of mite, Brevipalpus phoenicis. However, mites collected from CiLV-C and CiLV-N infected citrus groves in Mexico were identified as B. yothersi and B. californicus sensu lato, respectively, and only B. yothersi was detected from CiLV-C2 and CiLV-N mixed infections in the Orinoco regions of Colombia. Phylogenetic analysis of the helicase, RNA-dependent RNA polymerase 2 domains and p24 gene amino acid sequences of cytoplasmic leprosis viruses showed a close relationship with recently deposited mosquito-borne negevirus sequences. Here, we present evidence that both cytoplasmic and nuclear viruses seem to replicate in viruliferous Brevipalpus species. The possible replication in the mite vector and the close relationship with mosquito borne negeviruses are consistent with the concept that members of the genus Cilevirus and Higrevirus originated in mites and citrus may play the role of mite virus vector.


Asunto(s)
Vectores Artrópodos/virología , Citrus/virología , Interacciones Huésped-Patógeno , Ácaros/virología , Virus de Plantas/fisiología , Animales , Enfermedades de las Plantas
15.
Phytopathology ; 105(4): 564-75, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25423071

RESUMEN

Citrus leprosis is one of the most destructive diseases of Citrus spp. and is associated with two unrelated virus groups that produce particles primarily in either the cytoplasm or nucleus of infected plant cells. Symptoms of leprosis, including chlorotic spots surrounded by yellow haloes on leaves and necrotic spots on twigs and fruit, were observed on leprosis-affected mandarin and navel sweet orange trees in the state of Querétaro, Mexico. Serological and molecular assays showed that the cytoplasmic types of Citrus leprosis virus (CiLV-C) often associated with leprosis symptomatic tissues were absent. However, using transmission electron microscopy, bullet-shaped rhabdovirus-like virions were observed in the nuclei and cytoplasm of the citrus leprosis-infected leaf tissues. An analysis of small RNA populations from symptomatic tissue was carried out to determine the genome sequence of the rhabdovirus-like particles observed in the citrus leprosis samples. The complete genome sequence showed that the nuclear type of CiLV (CiLV-N) present in the samples consisted of two negative-sense RNAs: 6,268-nucleotide (nt)-long RNA1 and 5,847-nt-long RNA2, excluding the poly(A) tails. CiLV-N had a genome organization identical to that of Orchid fleck virus (OFV), with the exception of shorter 5' untranslated regions in RNA1 (53 versus 205 nt) and RNA2 (34 versus 182 nt). Phylogenetic trees constructed with the amino acid sequences of the nucleocapsid (N) and glycoproteins (G) and the RNA polymerase (L protein) showed that CiLV-N clusters with OFV. Furthermore, phylogenetic analyses of N protein established CiLV-N as a member of the proposed genus Dichorhavirus. Reverse-transcription polymerase chain reaction primers for the detection of CiLV-N were designed based on the sequence of the N gene and the assay was optimized and tested to detect the presence of CiLV-N in both diseased and symptom-free plants.


Asunto(s)
Citrus/virología , Enfermedades de las Plantas/virología , Virus de Plantas/clasificación , Virus ARN/clasificación , Secuencia de Aminoácidos , ADN Complementario/química , ADN Complementario/genética , Frutas/virología , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , México , Datos de Secuencia Molecular , Nucleocápside/genética , Filogenia , Hojas de la Planta/virología , Virus de Plantas/genética , Virus de Plantas/ultraestructura , Virus ARN/genética , Virus ARN/ultraestructura , ARN Viral/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Virión
16.
Genome Announc ; 2(1)2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24435856

RESUMEN

The complete genome sequences of three related endogenous pararetroviruses (EPRVs) were obtained by 454 sequencing of nucleic acid extracts from Carrizo citrange, used as a citrus rootstock. Numerous homologous sequences have been found in the sweet orange genome. The new EPRVs are most closely related to petunia vein-clearing virus.

17.
Genome Announc ; 1(4)2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23887919

RESUMEN

The complete genome of citrus leprosis virus nuclear type (CiLV-N) was identified by small RNA sequencing utilizing leprosis-affected citrus samples collected from the state of Querétaro, Mexico. The nucleotide identity and phylogenetic analysis indicate that CiLV-N is very closely related to orchid fleck virus, which typically infects Cymbidium species.

18.
Phytopathology ; 103(5): 488-500, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23268581

RESUMEN

Citrus leprosis in Colombia was previously shown to be caused by cytoplasmic Citrus leprosis virus (CiLV-C). In 2011, enzyme-linked immunosorbent assay and reverse-transcription polymerase chain reaction (RT-PCR)-based diagnostic methods failed to identify CiLV-C from citrus samples with symptoms similar to citrus leprosis; however, virions similar to CiLV-C were observed in the cytoplasm of the symptomatic leaves by transmission electron microscopy. Furthermore, the causal organism was transmitted by the false spider mite, Brevipalpus phoenicis, to healthy citrus seedlings. A library of small RNAs was constructed from symptomatic leaves and used as the template for Illumina high-throughput parallel sequencing. The complete genome sequence and structure of a new bipartite RNA virus was determined. RNA1 (8,717 nucleotides [nt]) contained two open reading frames (ORFs). ORF1 encoded the replication module, consisting of five domains: namely, methyltransferase (MTR), cysteine protease-like, FtsJ-MTR, helicase (Hel), and RNA-dependent RNA polymerase (RdRp); whereas ORF2 encoded the putative coat protein. RNA2 (4,989 nt) contained five ORFs that encode the movement protein (MP) and four hypothetical proteins (p7, p15, p24, and p61). The structure of this virus genome resembled that of CiLV-C except that it contained a long 3' untranslated terminal region and an extra ORF (p7) in RNA2. Both the RNA1 and RNA2 of the new virus had only 58 and 50% nucleotide identities, respectively, with known CiLV-C sequences and, thus, it appears to be a novel virus infecting citrus. Phylogenetic analyses of the MTR, Hel, RdRp, and MP domains also indicated that the new virus was closely related to CiLV-C. We suggest that the virus be called Citrus leprosis virus cytoplasmic type 2 (CiLV-C2) and it should be unambiguously classified as a definitive member of the genus Cilevirus. A pair of CiLV-C2 genome-specific RT-PCR primers was designed and validated to detect its presence in citrus leprosis samples collected from the Casanare and Meta states in Colombia.


Asunto(s)
Vectores Arácnidos/virología , Citrus/virología , Ácaros/virología , Enfermedades de las Plantas/virología , Virus ARN/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Citrus/ultraestructura , Colombia , Frutas , Biblioteca de Genes , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/virología , Virus ARN/clasificación , Virus ARN/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Plantones/ultraestructura , Plantones/virología , Alineación de Secuencia , Análisis de Secuencia de ADN
19.
J Microbiol Methods ; 92(1): 79-89, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23123161

RESUMEN

The xylem-limited, Gram-negative, fastidious plant bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease affecting approximately half of the citrus plantations in the State of São Paulo, Brazil. The disease was recently found in Central America and is threatening the multi-billion U.S. citrus industry. Many strains of X. fastidiosa are pathogens or endophytes in various plants growing in the U.S., and some strains cross infect several host plants. In this study, a TaqMan-based assay targeting the 16S rDNA signature region was developed for the identification of X. fastidiosa at the species level. Another TaqMan-based assay was developed for the specific identification of the CVC strains. Both new assays have been systematically validated in comparison with the primer/probe sets from four previously published assays on one platform and under similar PCR conditions, and shown to be superior. The species specific assay detected all X. fastidiosa strains and did not amplify any other citrus pathogen or endophyte tested. The CVC-specific assay detected all CVC strains but did not amplify any non-CVC X. fastidiosa nor any other citrus pathogen or endophyte evaluated. Both sets were multiplexed with a reliable internal control assay targeting host plant DNA, and their diagnostic specificity and sensitivity remained unchanged. This internal control provides quality assurance for DNA extraction, performance of PCR reagents, platforms and operators. The limit of detection for both assays was equivalent to 2 to 10 cells of X. fastidiosa per reaction for field citrus samples. Petioles and midribs of symptomatic leaves of sweet orange harbored the highest populations of X. fastidiosa, providing the best materials for detection of the pathogen. These new species specific assay will be invaluable for molecular identification of X. fastidiosa at the species level, and the CVC specific assay will be very powerful for the specific identification of X. fastidiosa strains that cause citrus variegated chlorosis.


Asunto(s)
Técnicas Bacteriológicas/métodos , Citrus/microbiología , Enfermedades de las Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Xylella/clasificación , Xylella/aislamiento & purificación , Técnicas Bacteriológicas/normas , Brasil , América Central , Cartilla de ADN/genética , Sondas de Oligonucleótidos/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estándares de Referencia , Sensibilidad y Especificidad , Estados Unidos , Xylella/genética
20.
Plant Dis ; 97(9): 1227-1234, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30722435

RESUMEN

Citrus tristeza virus (CTV) isolates have been grouped into six genotypes: T3, T30, T36, VT, B165, and resistance breaking (RB) based on symptoms, host range, and genomic sequence data. The RB genotype has recently been identified with the novel property of replicating in trifoliate orange trees, a resistant host for the other five genotypes. Puerto Rican CTV isolate B301 caused mild vein clearing symptoms in Mexican lime but did not induce seedling yellows or stem pitting reactions in appropriate indicator Citrus spp., which are typical host reactions of the isolate T30. The isolate B301 was not detected by the genotype specific primer (GSP), which identifies the CTV-T3, -T30, -T36, -VT, and B165 genotypes. A primer pair for reverse transcription polymerase chain reaction (RT-PCR) amplification of the CTV-RB genotype was designed from the heat shock protein (p65) region based on the complete genomic sequences of trifoliate RB isolates from New Zealand available in the GenBank databases. The amplicon sequence from isolate B301 was 98% identical to that of the other trifoliate RB isolates. In addition, B301 was successfully inoculated into 'Carrizo citrange' (a trifoliate hybrid) but did not induce any symptoms. Furthermore, the complete genome sequence of B301 followed by the phylogenetic analysis revealed that the isolate is part of the RB clade with other CTV-RB isolates from New Zealand and Hawaii. Additional CTV isolates obtained from Puerto Rico were tested with the RB-GSP and confirmed the presence of trifoliate RB isolates in mixed infection with known CTV genotypes. Although this is the first report of a CTV trifoliate RB genotype from Puerto Rico, this genotype was present there prior to 1992.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...