Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39062169

RESUMEN

About one-fourth of patients with pancreatic ductal adenocarcinoma (PDAC) are categorized as borderline resectable (BR) or locally advanced (LA). Chemotherapy and radiation therapy have not yielded the anticipated outcomes in curing patients with BR/LA PDAC. The surgical resection of these tumors presents challenges owing to the unpredictability of the resection margin, involvement of vasculature with the tumor, the likelihood of occult metastasis, a higher ratio of positive lymph nodes, and the relatively larger size of tumor nodules. Oncolytic virotherapy has shown promising activity in preclinical PDAC models. Unfortunately, the desmoplastic stroma within the PDAC tumor microenvironment establishes a barrier, hindering the infiltration of oncolytic viruses and various therapeutic drugs-such as antibodies, adoptive cell therapy agents, and chemotherapeutic agents-in reaching the tumor site. Recently, a growing emphasis has been placed on targeting major acellular components of tumor stroma, such as hyaluronic acid and collagen, to enhance drug penetration. Oncolytic viruses can be engineered to express proteolytic enzymes that cleave hyaluronic acid and collagen into smaller polypeptides, thereby softening the desmoplastic stroma, ultimately leading to increased viral distribution along with increased oncolysis and subsequent tumor size regression. This approach may offer new possibilities to improve the resectability of patients diagnosed with BR and LA PDAC.

2.
Front Immunol ; 15: 1287459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361931

RESUMEN

Pancreatic Ductal Adenocarcinoma (PDAC) is projected to become the 2nd leading cause of cancer-related deaths in the United States. Limitations in early detection and treatment barriers contribute to the lack of substantial success in the treatment of this challenging-to-treat malignancy. Desmoplasia is the hallmark of PDAC microenvironment that creates a physical and immunologic barrier. Stromal support cells and immunomodulatory cells face aberrant signaling by pancreatic cancer cells that shifts the complex balance of proper repair mechanisms into a state of dysregulation. The product of this dysregulation is the desmoplastic environment that encases the malignant cells leading to a dense, hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance, and suppresses anti-tumor immune invasion. This desmoplastic environment combined with the immunoregulatory events that allow it to persist serve as the primary focus of this review. The physical barrier and immune counterbalance in the tumor microenvironment (TME) make PDAC an immunologically cold tumor. To convert PDAC into an immunologically hot tumor, tumor microenvironment could be considered alongside the tumor cells. We discuss the complex network of microenvironment molecular and cellular composition and explore how they can be targeted to overcome immuno-therapeutic challenges.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Transducción de Señal , Inmunomodulación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA