Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(11)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38501474

RESUMEN

SiCH and its cation have consistently emerged as predicted species in models of silicon chemistry within the interstellar medium, although they remain unobserved in space. Hindered by their intrinsic instability, no spectroscopic insights have been gleaned concerning the SiCH+ cation. In this study, we present experimental measurements on the SiCH+ cation through single-photon ionization spectroscopy of the SiCH radical within the 8.0-11.0 eV range. Gas-phase SiCH radicals were generated through chemical reactions involving CHx (x = 0-3) and SiHy (y = 0-3) within a microwave discharge flow-tube reactor. Employing a double imaging photoelectron/photoion coincidence spectrometer on the DESIRS beamline at the SOLEIL synchrotron, we recorded mass-selected ion yield and photoelectron spectra. From the analysis of the photoelectron spectrum supported by ab initio calculations and Franck-Condon simulations, the adiabatic ionization energies for the transitions from the X2Π ground electronic state of SiCH toward the X+3Σ- and A+3Π electronic states of SiCH+ have been derived [8.935(6) and 10.664(6) eV, respectively, without spin-orbit correction]. The contribution from the less stable isomer HSiC has been explored in our analysis and ruled out in our experiments.

2.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517257

RESUMEN

We present a method for the reconstruction of ion kinetic energy distributions from ion time-of-flight mass spectra through ion trajectory simulations. In particular, this method is applicable to complicated spectrometer geometries with largely anisotropic ion collection efficiencies. A calibration procedure using a single ion mass peak allows the accurate determination of parameters related to the spectrometer calibration, experimental alignment, and instrument response function, which improves the agreement between simulations and experiment. The calibrated simulation is used to generate a set of basis functions for the time-of-flight spectra, which are then used to transform from time-of-flight to kinetic-energy spectra. We demonstrate this reconstruction method on a recent pump-probe experiment by Asmussen et al. [Asmussen et al., Phys. Chem. Chem. Phys., 23, 15138, (2021)] on helium nanodroplets and retrieve time-resolved kinetic-energy-release spectra for the ions from ion time-of-flight spectra.

3.
Phys Chem Chem Phys ; 25(35): 23568-23578, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37656136

RESUMEN

We report the first experimental observation of single-photon ionization transitions of the SiC radical between 8.0 and 11.0 eV performed on the DESIRS beamline at the SOLEIL synchrotron facility. The SiC radical, very difficult to synthesize in the gas phase, was produced through chemical reactions between CHx (x = 0-3) and SiHy (y = 0-3) in a continuous microwave discharge flow tube, the CHx and SiHy species being formed by successive hydrogen-atom abstractions induced by fluorine atoms on methane and silane, respectively. Mass-selected ion yield and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The photoelectron spectrum enables the first direct experimental determinations of the X+ 4Σ- ← X 3Π and 1+ 2Π â† X 3Π adiabatic ionization energies of SiC (8.978(10) eV and 10.216(24) eV, respectively). Calculated spectra based on Franck-Condon factors are compared with the experimental spectra. These spectra were obtained by solving the rovibrational Hamiltonian, using the potential energy curves calculated at the multireference single and double configuration interaction level with Davidson correction (MRCI + Q) and the aug-cc-pV5Z basis set. MRCI + Q calculations including the core and core-valence electron correlation were performed using the aug-cc-pCV6Z basis set to predict the spectroscopic properties of the six lowest electronic states of SiC+. Complete basis set extrapolations and relativistic energy corrections were also included in the determination of the energy differences characterizing the photoionization process. Using our experimental and theoretical results, we derived semi-experimental values for the five lowest ionization energies of SiC.

4.
Phys Chem Chem Phys ; 24(47): 28844-28852, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36422471

RESUMEN

Superfluid helium nanodroplets are often considered as transparent and chemically inert nanometer-sized cryo-matrices for high-resolution or time-resolved spectroscopy of embedded molecules and clusters. On the other hand, when the helium nanodroplets are resonantly excited with XUV radiation, a multitude of ultrafast processes are initiated, such as relaxation into metastable states, formation of nanoscopic bubbles or excimers, and autoionization channels generating low-energy free electrons. Here, we discuss the full spectrum of ultrafast relaxation processes observed when helium nanodroplets are electronically excited. In particular, we perform an in-depth study of the relaxation dynamics occurring in the lowest 1s2s and 1s2p droplet bands using high resolution, time-resolved photoelectron spectroscopy. The simplified excitation scheme and improved resolution allow us to identify the relaxation into metastable triplet and excimer states even when exciting below the droplets' autoionization threshold, unobserved in previous studies.

5.
Phys Chem Chem Phys ; 23(2): 846-858, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33346303

RESUMEN

We describe the setup and the performance of a new pulsed Stern-Gerlach deflector and present results for small sodium-doped ammonia clusters Na(NH3)n (n = 1-4) in a molecular beam. NaNH3 shows the expected deflection of a spin ½ system, while all lager clusters show much smaller deflections. Experimental deflection ratios are compared with the values calculated from molecular dynamics simulations. The comparison reveals that intracluster spin relaxation in NaNH3 takes place on a time scale significantly longer than 200 µs. Assuming that intracluster relaxation is the cause of the reduced deflection, relaxation times seem to be on the order of 200 µs for all larger clusters Na(NH3)n (n = 2-4). Our work is a first attempt to understand the magnetic properties of isolated, weakly-bound clusters with relevance to the variety of diamagnetic and paramagnetic species expected in solvated electron systems.

6.
J Phys Chem A ; 124(29): 6050-6060, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32551647

RESUMEN

Single-photon, photoelectron-photoion coincidence spectroscopy is used to record the mass-selected ion spectra and slow photoelectron spectra of C4H5 radicals produced by the abstraction of hydrogen atoms from three C4H6 precursors by fluorine atoms generated by a microwave discharge. Three different C4H5 isomers are identified, with the relative abundances depending on the nature of the precursor (1-butyne, 1,2-butadiene, and 1,3-butadiene). The results are compared with our previous work using 2-butyne as a precursor [Hrodmarsson, H. R. J. Phys. Chem. A 2019, 123, 1521-1528]. The slow photoelectron spectra provide new information on the three radical isomers that is in good agreement with previous experimental and theoretical results [Lang, M. J. Phys. Chem. A 2015, 119, 3995-4000; Hansen, N. J. Phys. Chem. A 2006, 110, 3670-3678]. The energy scans of the C4H5 photoionization signal are recorded with substantially better resolution and signal-to-noise ratio than those in earlier work, allowing the observation of autoionizing resonances based on excited states of the C4H5 cation. Photoelectron images recorded at several energies are also reported, providing insight into the decay processes of these excited states. Finally, in contrast to the earlier work using 2-butyne as a precursor, where H-atom abstraction was the only observed process, F- and H-atom additions to the present precursors are also observed through the detection of C4H6F, C4H5F, and C4H7.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...