Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 490: 37-49, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35820658

RESUMEN

The vertebrate peripheral nervous system (PNS) is an intricate network that conveys sensory and motor information throughout the body. During development, extracellular cues direct the migration of axons and glia through peripheral tissues. Currently, the suite of molecules that govern PNS axon-glial patterning is incompletely understood. To elucidate factors that are critical for peripheral nerve development, we characterized the novel zebrafish mutant, stl159, that exhibits abnormalities in PNS patterning. In these mutants, motor and sensory nerves that develop adjacent to axial muscle fail to extend normally, and neuromasts in the posterior lateral line system, as well as neural crest-derived melanocytes, are incorrectly positioned. The stl159 genetic lesion lies in the basic helix-loop-helix (bHLH) transcription factor tcf15, which has been previously implicated in proper development of axial muscles. We find that targeted loss of tcf15 via CRISPR-Cas9 genome editing results in the PNS patterning abnormalities observed in stl159 mutants. Because tcf15 is expressed in developing muscle prior to nerve extension, rather than in neurons or glia, we predict that tcf15 non-cell-autonomously promotes peripheral nerve patterning in zebrafish through regulation of extracellular patterning cues. Our work underscores the importance of muscle-derived factors in PNS development.


Asunto(s)
Nervios Periféricos , Pez Cebra , Animales , Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Músculos , Sistema Nervioso Periférico , Pez Cebra/genética
2.
Nat Commun ; 10(1): 2976, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278268

RESUMEN

In the central nervous system (CNS), oligodendrocytes myelinate multiple axons; in the peripheral nervous system (PNS), Schwann cells (SCs) myelinate a single axon. Why are the myelinating potentials of these glia so fundamentally different? Here, we find that loss of Fbxw7, an E3 ubiquitin ligase component, enhances the myelinating potential of SCs. Fbxw7 mutant SCs make thicker myelin sheaths and sometimes appear to myelinate multiple axons in a fashion reminiscent of oligodendrocytes. Several Fbxw7 mutant phenotypes are due to dysregulation of mTOR; however, the remarkable ability of mutant SCs to ensheathe multiple axons is independent of mTOR signaling. This indicates distinct roles for Fbxw7 in SC biology including modes of axon interactions previously thought to fundamentally distinguish myelinating SCs from oligodendrocytes. Our data reveal unexpected plasticity in the myelinating potential of SCs, which may have important implications for our understanding of both PNS and CNS myelination and myelin repair.


Asunto(s)
Axones/fisiología , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Vaina de Mielina/fisiología , Animales , Axones/ultraestructura , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Modelos Animales , Vaina de Mielina/ultraestructura , Nervio Ciático/citología , Nervio Ciático/ultraestructura
3.
Neural Dev ; 13(1): 17, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089513

RESUMEN

BACKGROUND: In the peripheral nervous system (PNS), specialized glial cells called Schwann cells produce myelin, a lipid-rich insulating sheath that surrounds axons and promotes rapid action potential propagation. During development, Schwann cells must undergo extensive cytoskeletal rearrangements in order to become mature, myelinating Schwann cells. The intracellular mechanisms that drive Schwann cell development, myelination, and accompanying cell shape changes are poorly understood. METHODS: Through a forward genetic screen in zebrafish, we identified a mutation in the atypical guanine nucleotide exchange factor, dock1, that results in decreased myelination of peripheral axons. Rescue experiments and complementation tests with newly engineered alleles confirmed that mutations in dock1 cause defects in myelination of the PNS. Whole mount in situ hybridization, transmission electron microscopy, and live imaging were used to fully define mutant phenotypes. RESULTS: We show that Schwann cells in dock1 mutants can appropriately migrate and are not decreased in number, but exhibit delayed radial sorting and decreased myelination during early stages of development. CONCLUSIONS: Together, our results demonstrate that mutations in dock1 result in defects in Schwann cell development and myelination. Specifically, loss of dock1 delays radial sorting and myelination of peripheral axons in zebrafish.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Sistema de la Línea Lateral/citología , Mutación/genética , Células de Schwann/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Unión al GTP rac/genética , Factores de Edad , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Sistema de la Línea Lateral/embriología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microinyecciones , Microscopía Electrónica de Transmisión , Proteína Básica de Mielina/metabolismo , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/embriología , ARN Mensajero/metabolismo , Células de Schwann/ultraestructura , Pez Cebra , Proteínas de Pez Cebra/metabolismo , Proteínas de Unión al GTP rac/metabolismo
4.
J Exp Med ; 215(3): 941-961, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29367382

RESUMEN

Myelin is a multilamellar sheath generated by specialized glia called Schwann cells (SCs) in the peripheral nervous system (PNS), which serves to protect and insulate axons for rapid neuronal signaling. In zebrafish and rodent models, we identify GPR56/ADGRG1 as a conserved regulator of PNS development and health. We demonstrate that, during SC development, GPR56-dependent RhoA signaling promotes timely radial sorting of axons. In the mature PNS, GPR56 is localized to distinct SC cytoplasmic domains, is required to establish proper myelin thickness, and facilitates organization of the myelin sheath. Furthermore, we define plectin-a scaffolding protein previously linked to SC domain organization, myelin maintenance, and a series of disorders termed "plectinopathies"-as a novel interacting partner of GPR56. Finally, we show that Gpr56 mutants develop progressive neuropathy-like symptoms, suggesting an underlying mechanism for peripheral defects in some human patients with GPR56 mutations. In sum, we define Gpr56 as a new regulator in the development and maintenance of peripheral myelin.


Asunto(s)
Vaina de Mielina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Citoesqueleto/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Mutación/genética , Vaina de Mielina/ultraestructura , Plectina/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/genética , Proteína de Unión al GTP rhoA/metabolismo
5.
Curr Opin Neurobiol ; 47: 131-137, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29096241

RESUMEN

Schwann cells (SCs) are specialized glial cells that myelinate and protect axons in the peripheral nervous system (PNS). Although myelinating SCs are more commonly studied, the PNS also contains a variety of non-myelinating SCs, including but not limited to Remak SCs (RSCs), terminal SCs, enteric glia. Although the field currently lacks many robust tools for interrogating the functions of non-myelinating SCs, recent evidence suggests that, like their myelinating counterparts, non-myelinating SCs are critical for proper PNS function. In this review, we focus specifically on RSCs and highlight recent advances in understanding regulators of RSC development, function, and participation in PNS regeneration.


Asunto(s)
Sistema Nervioso Periférico/fisiología , Células de Schwann/fisiología , Animales , Axones/fisiología , Humanos , Regeneración Nerviosa/fisiología
6.
Proc Natl Acad Sci U S A ; 114(43): E9153-E9162, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073112

RESUMEN

Oligodendrocytes in the central nervous system produce myelin, a lipid-rich, multilamellar sheath that surrounds axons and promotes the rapid propagation of action potentials. A critical component of myelin is myelin basic protein (MBP), expression of which requires anterograde mRNA transport followed by local translation at the developing myelin sheath. Although the anterograde motor kinesin KIF1B is involved in mbp mRNA transport in zebrafish, it is not entirely clear how mbp transport is regulated. From a forward genetic screen for myelination defects in zebrafish, we identified a mutation in actr10, which encodes the Arp11 subunit of dynactin, a critical activator of the retrograde motor dynein. Both the actr10 mutation and pharmacological dynein inhibition in zebrafish result in failure to properly distribute mbp mRNA in oligodendrocytes, indicating a paradoxical role for the retrograde dynein/dynactin complex in anterograde mbp mRNA transport. To address the molecular mechanism underlying this observation, we biochemically isolated reporter-tagged Mbp mRNA granules from primary cultured mammalian oligodendrocytes to show that they indeed associate with the retrograde motor complex. Next, we used live-cell imaging to show that acute pharmacological dynein inhibition quickly arrests Mbp mRNA transport in both directions. Chronic pharmacological dynein inhibition also abrogates Mbp mRNA distribution and dramatically decreases MBP protein levels. Thus, these cell culture and whole animal studies demonstrate a role for the retrograde dynein/dynactin motor complex in anterograde mbp mRNA transport and myelination in vivo.


Asunto(s)
Complejo Dinactina/metabolismo , Dineínas/metabolismo , Proteína Básica de Mielina/genética , Oligodendroglía/metabolismo , ARN Mensajero/metabolismo , Animales , Animales Modificados Genéticamente , Axones/patología , Transporte Biológico , Proliferación Celular/genética , Células Cultivadas , Complejo Dinactina/genética , Dineínas/genética , Larva , Proteínas de Microfilamentos/genética , Oligodendroglía/patología , Ratas Sprague-Dawley , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
G3 (Bethesda) ; 7(10): 3415-3425, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28855284

RESUMEN

As forward genetic screens in zebrafish become more common, the number of mutants that cannot be identified by gross morphology or through transgenic approaches, such as many nervous system defects, has also increased. Screening for these difficult-to-visualize phenotypes demands techniques such as whole-mount in situ hybridization (WISH) or antibody staining, which require tissue fixation. To date, fixed tissue has not been amenable for generating libraries for whole genome sequencing (WGS). Here, we describe a method for using genomic DNA from fixed tissue and a bioinformatics suite for WGS-based mapping of zebrafish mutants. We tested our protocol using two known zebrafish mutant alleles, gpr126st49 and egr2bfh227 , both of which cause myelin defects. As further proof of concept we mapped a novel mutation, stl64, identified in a zebrafish WISH screen for myelination defects. We linked stl64 to chromosome 1 and identified a candidate nonsense mutation in the F-box and WD repeat domain containing 7 (fbxw7) gene. Importantly, stl64 mutants phenocopy previously described fbxw7vu56 mutants, and knockdown of fbxw7 in wild-type animals produced similar defects, demonstrating that stl64 disrupts fbxw7 Together, these data show that our mapping protocol can map and identify causative lesions in mutant screens that require tissue fixation for phenotypic analysis.


Asunto(s)
Secuenciación Completa del Genoma/métodos , Pez Cebra/genética , Animales , Mapeo Cromosómico , Mutación , Polimorfismo de Nucleótido Simple , Fijación del Tejido
8.
J Neurosci ; 36(49): 12351-12367, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27927955

RESUMEN

Schwann cells (SCs) are essential for proper peripheral nerve development and repair, although the mechanisms regulating these processes are incompletely understood. We previously showed that the adhesion G protein-coupled receptor Gpr126/Adgrg6 is essential for SC development and myelination. Interestingly, the expression of Gpr126 is maintained in adult SCs, suggestive of a function in the mature nerve. We therefore investigated the role of Gpr126 in nerve repair by studying an inducible SC-specific Gpr126 knock-out mouse model. Here, we show that remyelination is severely delayed after nerve-crush injury. Moreover, we also observe noncell-autonomous defects in macrophage recruitment and axon regeneration in injured nerves following loss of Gpr126 in SCs. This work demonstrates that Gpr126 has critical SC-autonomous and SC-nonautonomous functions in remyelination and peripheral nerve repair. SIGNIFICANCE STATEMENT: Lack of robust remyelination represents one of the major barriers to recovery of neurological functions in disease or following injury in many disorders of the nervous system. Here we show that the adhesion class G protein-coupled receptor (GPCR) Gpr126/Adgrg6 is required for remyelination, macrophage recruitment, and axon regeneration following nerve injury. At least 30% of all approved drugs target GPCRs; thus, Gpr126 represents an attractive potential target to stimulate repair in myelin disease or following nerve injury.


Asunto(s)
Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/patología , Receptores Acoplados a Proteínas G/genética , Células de Schwann/patología , Animales , Axones , Ratones , Ratones Noqueados , Músculo Esquelético/inervación , Músculo Esquelético/patología , Vaina de Mielina , Compresión Nerviosa , Regeneración Nerviosa , Infiltración Neutrófila , Nervio Ciático/lesiones
9.
Handb Exp Pharmacol ; 234: 275-298, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27832492

RESUMEN

Adhesion G-protein-coupled receptors (aGPCRs) are emerging as key regulators of nervous system development and health. aGPCRs can regulate many aspects of neural development, including cell signaling, cell-cell and cell-matrix interactions, and, potentially, mechanosensation. Here, we specifically focus on the roles of several aGPCRs in synapse biology, dendritogenesis, and myelinating glial cell development. The lessons learned from these examples may be extrapolated to other contexts in the nervous system and beyond.


Asunto(s)
Adhesión Celular , Membrana Celular/metabolismo , Sinapsis Eléctricas/metabolismo , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Sitios de Unión , Moléculas de Adhesión Celular/metabolismo , Humanos , Ligandos , Modelos Moleculares , Morfogénesis , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Acoplados a Proteínas G/química , Transducción de Señal , Relación Estructura-Actividad
10.
BMC Genomics ; 16: 62, 2015 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-25715737

RESUMEN

BACKGROUND: Adhesion G protein-coupled receptors (aGPCRs) are the second largest of the five GPCR families and are essential for a wide variety of physiological processes. Zebrafish have proven to be a very effective model for studying the biological functions of aGPCRs in both developmental and adult contexts. However, aGPCR repertoires have not been defined in any fish species, nor are aGPCR expression profiles in adult tissues known. Additionally, the expression profiles of the aGPCR family have never been extensively characterized over a developmental time-course in any species. RESULTS: Here, we report that there are at least 59 aGPCRs in zebrafish that represent homologs of 24 of the 33 aGPCRs found in humans; compared to humans, zebrafish lack clear homologs of GPR110, GPR111, GPR114, GPR115, GPR116, EMR1, EMR2, EMR3, and EMR4. We find that several aGPCRs in zebrafish have multiple paralogs, in line with the teleost-specific genome duplication. Phylogenetic analysis suggests that most zebrafish aGPCRs cluster closely with their mammalian homologs, with the exception of three zebrafish-specific expansion events in Groups II, VI, and VIII. Using quantitative real-time PCR, we have defined the expression profiles of 59 zebrafish aGPCRs at 12 developmental time points and 10 adult tissues representing every major organ system. Importantly, expression profiles of zebrafish aGPCRs in adult tissues are similar to those previously reported in mouse, rat, and human, underscoring the evolutionary conservation of this family, and therefore the utility of the zebrafish for studying aGPCR biology. CONCLUSIONS: Our results support the notion that zebrafish are a potentially useful model to study the biology of aGPCRs from a functional perspective. The zebrafish aGPCR repertoire, classification, and nomenclature, together with their expression profiles during development and in adult tissues, provides a crucial foundation for elucidating aGPCR functions and pursuing aGPCRs as therapeutic targets.


Asunto(s)
Moléculas de Adhesión Celular/genética , Receptores Acoplados a Proteínas G/genética , Transcriptoma , Pez Cebra/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Genoma , Pez Cebra/crecimiento & desarrollo
11.
Pharmacol Rev ; 67(2): 338-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25713288

RESUMEN

The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , AMP Cíclico/fisiología , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Sistemas de Mensajero Secundario , Animales , Adhesión Celular , Moléculas de Adhesión Celular/química , Membrana Celular/enzimología , Membrana Celular/metabolismo , Movimiento Celular , Humanos , Agencias Internacionales , Ligandos , Farmacología/tendencias , Farmacología Clínica/tendencias , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/química , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/clasificación , Transducción de Señal , Sociedades Científicas , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...