Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Pathogens ; 12(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38133276

RESUMEN

Infection with the foodborne pathogen Campylobacter is the leading bacterial cause of human foodborne illness in the United States. The objectives of this experiment were to test the hypothesis that mixed microbial populations from the bovine rumen may be better at excluding Campylobacter than populations from freshly voided feces and to explore potential reasons as to why the rumen may be a less favorable environment for Campylobacter than feces. In an initial experiment, C. jejuni cultures inoculated without or with freshly collected bovine rumen fluid, bovine feces or their combination were cultured micro-aerobically for 48 h. Results revealed that C. jejuni grew at similar growth rates during the first 6 h of incubation regardless of whether inoculated with the rumen or fecal contents, with rates ranging from 0.178 to 0.222 h-1. However, C. jejuni counts (log10 colony-forming units/mL) at the end of the 48 h incubation were lowest in cultures inoculated with rumen fluid (5.73 log10 CFUs/mL), intermediate in cultures inoculated with feces or both feces and rumen fluid (7.16 and 6.36 log10 CFUs/mL) and highest in pure culture controls that had not been inoculated with the rumen or fecal contents (8.32 log10 CFUs/mL). In follow-up experiments intended to examine the potential effects of hydrogen and hydrogen-consuming methanogens on C. jejuni, freshly collected bovine feces, suspended in anaerobic buffer, were incubated anaerobically under either a 100% carbon dioxide or 50:50 carbon dioxide/hydrogen gas mix. While C. jejuni viability decreased <1 log10 CFUs/mL during incubation of the fecal suspensions, this did not differ whether under low or high hydrogen accumulations or whether the suspensions were treated without or with the mechanistically distinct methanogen inhibitors, 5 mM nitrate, 0.05 mM 2-bromosulfonate or 0.001 mM monensin. These results suggest that little if any competition between C. jejuni and hydrogen-consuming methanogens exists in the bovine intestine based on fecal incubations.

2.
Pathogens ; 12(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38133337

RESUMEN

Concern exists that the continued use of antibiotics in animal feeds may lead to an increased prevalence of resistant bacteria within the host animal's gastrointestinal tract. To evaluate the effect of chlortetracycline on the persistence of Salmonella enterica serotype Typhimurium within a diverse population of porcine cecal bacteria, we cultured a mixed population of cecal bacteria without or with added chlortetracycline. When grown at a 24 h vessel turnover rate, chlortetracycline-susceptible S. Typhimurium exhibited more than 2.5 times faster (p < 0.05) disappearance rates than theoretically expected (0.301 log10 colony-forming unit/mL per day) but did not differ whether treated or not with 55 mg of chlortetracycline/L. Chlortetracycline-resistant S. Typhimurium was not recovered from any of these cultures. When the mixed cultures were inoculated with a chlortetracycline-resistant S. Typhimurium, rates of disappearance were nearly two times slower (p < 0.05) than those observed earlier with chlortetracycline-susceptible S. Typhimurium, and cultures persisted at >2 log10 colony-forming units/mL for up to 14 days of treatment with 110 mg of chlortetracycline/L. Under the conditions of this study, chlortetracycline-resistant S. Typhimurium was competitively enabled to persist longer within the mixed populations of porcine gut bacteria than chlortetracycline-susceptible S. Typhimurium, regardless of the presence or absence of added chlortetracycline.

3.
Microorganisms ; 12(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38257860

RESUMEN

Livestock producers need new technologies to maintain the optimal health and well-being of their animals while minimizing the risks of propagating and disseminating pathogenic and antimicrobial-resistant bacteria to humans or other animals. Where possible, these interventions should contribute to the efficiency and profitability of animal production to avoid passing costs on to consumers. In this study, we examined the potential of nitroethane, 3-nitro-1-propionate, ethyl nitroacetate, taurine and L-cysteinesulfinic acid to modulate rumen methane production, a digestive inefficiency that results in the loss of up to 12% of the host's dietary energy intake and a major contributor of methane as a greenhouse gas to the atmosphere. The potential for these compounds to inhibit the foodborne pathogens, Escherichia coli O157:H7 and Salmonella Typhimurium DT104, was also tested. The results from the present study revealed that anaerobically grown O157:H7 and DT104 treated with the methanogenic inhibitor, ethyl nitroacetate, at concentrations of 3 and 9 mM had decreased (p < 0.05) mean specific growth rates of O157:H7 (by 22 to 36%) and of DT104 (by 16 to 26%) when compared to controls (0.823 and 0.886 h-1, respectively). The growth rates of O157:H7 and DT104 were decreased (p < 0.05) from controls by 31 to 73% and by 41 to 78% by α-lipoic acid, which we also found to inhibit in vitro rumen methanogenesis up to 66% (p < 0.05). Ethyl nitroacetate was mainly bacteriostatic, whereas 9 mM α-lipoic acid decreased (p < 0.05) maximal optical densities (measured at 600 nm) of O157:H7 and DT104 by 25 and 42% compared to controls (0.448 and 0.451, respectively). In the present study, the other oxidized nitro and organosulfur compounds were neither antimicrobial nor anti-methanogenic.

4.
Pathogens ; 11(11)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36422632

RESUMEN

Yersinia ruckeri is an important fish pathogen causing enteric redmouth disease. Antibiotics have traditionally been used to control this pathogen, but concerns of antibiotic resistance have created a need for alternative interventions. Presently, chlorate and certain nitrocompounds were tested against Y. ruckeri as well as a related species within the genus, Y. aleksiciae, to assess the effects of these inhibitors. The results reveal that 9 mM chlorate had no inhibitory effect against Y. ruckeri, but inhibited growth rates and maximum optical densities of Y. aleksciciae by 20-25% from those of untreated controls (0.46 h-1 and 0.29 maximum optical density, respectively). The results further reveal that 2-nitropropanol and 2-nitroethanol (9 mM) eliminated the growth of both Y. ruckeri and Y. aleksiciae during anaerobic or aerobic culture. Nitroethane, ethyl nitroacetate and ethyl-2-nitropropionate (9 mM) were less inhibitory when tested similarly. Results from a mixed culture of Y. ruckeri with fish tank microbes and of Y. aleksiciae with porcine fecal microbes reveal that the anti-Yersinia activity of the tested nitrocompounds was bactericidal, with 2-nitropropanol and 2-nitroethanol being more potent than the other tested nitrocompounds. The anti-Yersinia activity observed with these tested compounds warrants further study to elucidate the mechanisms of action and strategies for their practical application.

5.
Front Vet Sci ; 9: 817270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35187146

RESUMEN

Nitroethane is a potent methane-inhibitor for ruminants but little is known regarding simultaneous effects of repeated administration on pre- and post-gastric methane-producing activity and potential absorption and systemic accumulation of nitroethane in ruminants. Intraruminal administration of 120 mg nitroethane/kg body weight per day to Holstein cows (n = 2) over a 4-day period transiently reduced (P < 0.05) methane-producing activity of rumen fluid as much as 3.6-fold while concomitantly increasing (P < 0.05) methane-producing activity of feces by as much as 8.8-fold when compared to pre-treatment measurements. These observations suggest a bacteriostatic effect of nitroethane on ruminal methanogen populations resulting in increased passage of viable methanogens to the lower bovine gut. Ruminal VFA concentrations were also transiently affected by nitroethane administration (P < 0.05) reflecting adaptive changes in the rumen microbial populations. Mean (± SD) nitroethane concentrations in plasma of feedlot steers (n = 6/treatment) administered 80 or 160 mg nitroethane/kg body weight per day over a 7-day period were 0.12 ± 0.1 and 0.41 ± 0.1 µmol/mL 8 h after the initial administration indicating rapid absorption of nitroethane, with concentrations peaking 1 day after initiation of the 80 or 160 mg nitroethane/kg body weight per day treatments (0.38 ± 0.1 and 1.14 ± 0.1 µmol/mL, respectively). Plasma nitroethane concentrations declined thereafter to 0.25 ± 0.1 and 0.78 ± 0.3 and to 0.18 ± 0.1 and 0.44 ± 0.3 µmol/mL on days 2 and 7 for the 80 or 160 mg nitroethane/kg body weight per day treatment groups, respectively, indicating decreased absorption due to increased ruminal nitroethane degradation or to more rapid excretion of the compound.

6.
Arthropod Struct Dev ; 66: 101135, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35085947

RESUMEN

The southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae), continues to threaten high-value cash crops, including cotton. Earlier reports confirmed ingestion and transmission of disease-causing pathogens of cotton, including elucidation of the dimensions for the food and salivary canals of the southern green stink bug stylet bundle. During this earlier work, innervation of the stylet bundle was observed. Here, we present the first imagery and descriptions of the innervations (i.e., dendrites) within the southern green stink bug stylets. Two types of dendrites innervate each mandibular stylet, and the number of dendrites differed depending on location. Within the head, six dendrites (3 within a thick-walled and 3 within a thin-walled dendrite sheath) are present in each mandibular stylet; only 3 dendrites within a thin-walled sheath are present at the most distal labial segment. Transmission electron microscopy (TEM) suggests innervation of the maxillary stylets, and the presence of stained tissue within the dendritic canal of the maxillary stylets was observed via light microscopy, thereby supporting the TEM analyses. These new observations regarding types and spatial differences in numbers of dendrites within the mandibular stylets - and the new revelation of innervation within maxillary stylets - improve the current knowledge base regarding internal stylet morphology and feeding mechanics.


Asunto(s)
Estructuras Animales/inervación , Heterópteros , Animales
7.
Microorganisms ; 9(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34835526

RESUMEN

Staphylococcus aureus (S. aureus) causes gastrointestinal illness worldwide. Disinfectants are used throughout the food chain for pathogenic bacteria control. We investigated S. aureus bioavailability in swine Mandibular lymph node tissue (MLT) and pork sausage meat (PSM), established susceptibility values for S. aureus to disinfectants, and determined the multilocus sequence type of MRSA strains. Antimicrobial and disinfectant susceptibility profiles were determined for 164 S. aureus strains isolated from swine feces (n = 63), MLT (n = 49) and PSM (n = 52). No antimicrobial resistance (AMR) was detected to daptomycin, nitrofurantoin, linezolid, and tigecycline, while high AMR prevalence was determined to erythromycin (50.6%), tylosin tartrate (42.7%), penicillin (72%), and tetracycline (68.9%). Methicillin-resistant S. aureus (MRSA) strains, ST398 (n = 6) and ST5 (n = 1), were found in the MLT and PSM, 4 MRSA in MLT and 3 MRSA strains in the PSM. About 17.5% of feces strains and 41.6% of MLT and PSM strains were resistant to chlorhexidine. All strains were susceptible to triclosan and benzalkonium chloride, with no cross-resistance between antimicrobials and disinfectants. Six MRSA strains had elevated susceptibilities to 18 disinfectants. The use of formaldehyde and tris(hydroxylmethyl)nitromethane in DC&R was not effective, which can add chemicals to the environment. Didecyldimethylammonium chloride and benzyldimethylhexadecylammonium chloride were equally effective disinfectants. ST398 and ST5 MRSA strains had elevated susceptibilities to 75% of the disinfectants tested. This study establishes susceptibility values for S. aureus strains from swine feces, mandibular lymph node tissue, and commercial pork sausage against 24 disinfectants. Since it was demonstrated that S. aureus and MRSA strains can be found deep within swine lymph node tissue, it may be beneficial for the consumer if raw swine lymph node tissue is not used in uncooked food products and pork sausage.

8.
Front Vet Sci ; 8: 751266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631867

RESUMEN

Strategies are sought to reduce the carriage and dissemination of zoonotic pathogens and antimicrobial-resistant microbes within food-producing animals and their production environment. Thymol (an essential oil) is a potent bactericide in vitro but in vivo efficacy has been inconsistent, largely due to its lipophilicity and absorption, which limits its passage and subsequent availability in the distal gastrointestinal tract. Conjugation of thymol to glucose to form thymol-ß-d-glucopyranoside can decrease its absorption, but in vivo passage of effective concentrations to the lower gut remains suboptimal. Considering that contemporary swine diets often contain 5% or more added fat (to increase caloric density and reduce dustiness), we hypothesized that there may be sufficient residual fat in the distal intestinal tract to sequester free or conjugated thymol, thereby limiting the availability and subsequent effectiveness of this biocide. In support of this hypothesis, the anti-Salmonella Typhimurium effects of 6 mM free or conjugated thymol, expressed as log10-fold reductions of colony-forming units (CFU) ml-1, were diminished 90 and 58%, respectively, following 24-h in vitro anaerobic fecal incubation (at 39°C) with 3% added vegetable oil compared to reductions achieved during culture without added oil (6.1 log10 CFU ml-1). The antagonistic effect of vegetable oil and the bactericidal effect of free and conjugated thymol against Escherichia coli K88 tested similarly were diminished 86 and 84%, respectively, compared to reductions achieved in cultures incubated without added vegetable oil (5.7 log10 CFU ml-1). Inclusion of taurine (8 mg/ml), bile acids (0.6 mg/ml), or emulsifiers such as polyoxyethylene-40 stearate (0.2%), Tween 20, or Tween 80 (each at 1%) in the in vitro incubations had little effect on vegetable oil-caused inhibition of free or conjugated thymol. Based on these results, it seems reasonable to suspect that undigested lipid in the distal gut may limit the effectiveness of free or conjugated thymol. Accordingly, additional research is warranted to learn how to overcome obstacles diminishing bactericidal activity of free and conjugated thymol in the lower gastrointestinal tract of food-producing animals.

9.
Microorganisms ; 9(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923741

RESUMEN

The gut of food-producing animals is a reservoir for foodborne pathogens. Thymol is bactericidal against foodborne pathogens but rapid absorption of thymol from the proximal gut precludes the delivery of effective concentrations to the lower gut where pathogens mainly colonize. Thymol-ß-d-glucopyranoside is reported to be more resistant to absorption than thymol in everted jejunal segments and could potentially function as a prebiotic by resisting degradation and absorption in the proximal gut but being hydrolysable by microbial ß-glycosidase in the distal gut. Previous in vitro studies showed bactericidal effects of thymol-ß-d-glucopyranoside against Campylobacter, Escherichia coli, and Salmonella enterica serovar Typhimurium in the presence but not absence of intestinal microbes expressing ß-glycosidase activity, indicating that hydrolysis was required to obtain antimicrobial activity. Presently, the oral administration of thymol-ß-d-glucopyranoside was studied to examine the effects on intestinal carriage of Campylobacter, E. coli, and S. Typhimurium in swine. The effects of thymol-ß-d-glucopyranoside or thymol on antimicrobial sensitivity of representative E. coli isolates and characterized Salmonella strains were also explored. Results from two in vivo studies revealed little antimicrobial effects of thymol-ß-d-glucopyranoside on Campylobacter, E. coli, or S. Typhimurium in swine gut. These findings add credence to current thinking that hydrolysis and absorption of thymol-ß-d-glucopyranoside and thymol may be sufficiently rapid within the proximal gut to preclude delivery to the distal gut. Antibiotic susceptibilities of selected bacterial isolates and strains were mainly unaffected by thymol. Further research is warranted to overcome obstacles, preventing the delivery of efficacious amounts of thymol-ß-d-glucopyranoside to the lower gut.

10.
Microorganisms ; 8(10)2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-33080997

RESUMEN

Salmonella-contaminated lymph nodes (LN), when included into edible meat products, are a potential source of Salmonella foodborne disease. In this survey, ventral superficial cervical and mandibular LN were tested for the presence of Salmonella from two sow processing plants in the midwestern United States. Results indicate that both LN can be contaminated with Salmonella; mandibular LN have higher prevalence (p < 0.05) of Salmonella than cervical LN (16% vs. 0.91%), and the majority (>90%) of Salmonella isolates are pan-susceptible or resistant to one antimicrobial, while 9.78% of isolates were multi-drug-resistant (MDR-resistant to three or more classes of antimicrobials). Intervention methods to prevent foodborne disease could include elimination of these LN from pork products or inclusion of LN only into products that are destined for cooking. Integrated multi-faceted intervention methods need to be developed to reduce Salmonella in the food chain.

11.
Microorganisms ; 8(7)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679904

RESUMEN

Numerous Salmonella enterica serovars can cause disease and contamination of animal-produced foods. Oligosaccharide-rich products capable of blocking pathogen adherence to intestinal mucosa are attractive alternatives to antibiotics as these have potential to prevent enteric infections. Presently, a wood-derived prebiotic composed mainly of glucose-galactose-mannose-xylose oligomers was found to inhibit mannose-sensitive binding of select Salmonella Typhimurium and Escherichia coli strains when reacted with Saccharomyces boulardii. Tests for the ability of the prebiotic to prevent binding of a green fluorescent protein (GFP)-labeled S. Typhimurium to intestinal porcine epithelial cells (IPEC-J2) cultured in vitro revealed that prebiotic-exposed GFP-labeled S. Typhimurium bound > 30% fewer individual IPEC-J2 cells than did GFP-labeled S. Typhimurium having no prebiotic exposure. Quantitatively, 90% fewer prebiotic-exposed GFP-labeled S. Typhimurium cells were bound per individual IPEC-J2 cell compared to non-prebiotic exposed GFP-labeled S. Typhimurium. Comparison of invasiveness of S. Typhimurium DT104 against IPEC-J2 cells revealed greater than a 90% decrease in intracellular recovery of prebiotic-exposed S. Typhimurium DT104 compared to non-exposed controls (averaging 4.4 ± 0.2 log10 CFU/well). These results suggest compounds within the wood-derived prebiotic bound to E. coli and S. Typhimurium-produced adhesions and in the case of S. Typhimurium, this adhesion-binding activity inhibited the binding and invasion of IPEC-J2 cells.

12.
Microorganisms ; 7(12)2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31847499

RESUMEN

Foodborne pathogens are a major cause of diarrheal disease throughout the world [...].

13.
J Food Sci ; 84(6): 1501-1512, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31116418

RESUMEN

Susceptibility profiles were determined for 111 Campylobacter coli strains obtained in 1998 to 1999 and 2015 from market age pigs and pork chops against 22 disinfectants and 9 antimicrobials. Resistance to tetracycline (TET) was observed in 44.4% of 1998 to 1999 strains, and the antibiotic resistance profile was TET. But strains obtained in 2015 from swine and retail pork chops had 75% TET resistance and the antibiotic resistance profile was TET, followed by azithromycin-erythromycin-TET-telithromycin-clindamycin. Antimicrobial resistance increased in 2015 strains. All strains were resistant to triclosan, and 84.1% and 95.8% of strains in 1998 to 1999 and 2015, respectively, were chlorhexidine resistant. All strains were susceptible to benzalkonium chloride. There was a shift toward higher susceptibility to chlorhexidine, triclosan, P-128, OdoBan, CPB, and CPC in 2015 swine and pork chop strains compared with 1998 to 1999 strains. The disinfectants Tek-Trol and providone-iodine, tris(hydroxylmethyl)nitromethane (THN) and formaldehyde demonstrated the highest susceptibilities. Didecyldimethylammonium chloride (C10AC) appeared to be about equally effective as benzyldimethyltetradecylammonium chloride (C14BAC) for inhibiting C. coli, and both were more effective than C8AC and C12BAC, but C16BAC was not efficient at inhibiting C. coli. The BACs, C12BAC and C14BAC, were the most effective ingredients in DC&R. Also, C12BAC and C14BAC, or these two in synergy with C10AC were responsible for inhibition of C. coli at high P-128 MICs. No cross-resistance was observed between antibiotics and disinfectants. The continued use of THN and formaldehyde in DC&R should be evaluated since these components are not effective, and their inclusion adds unwanted chemicals in the environment. PRACTICAL APPLICATION: Campylobacter species cause diarrheal disease throughout the world. Disinfectants are often used on the farm, in veterinary medicine, by the food processing industry, in restaurants, and in consumer's homes. Limited information is available in the literature showing how disinfectants or disinfectant components may affect the many different foodborne pathogens, and, specifically, Campylobacter coli studied here. The knowledge generated in this study concerning the interactions of a broad array of disinfectants against C. coli may well affect the types of disinfectants and disinfectant formulations allowable for use by medical personnel, producers, food processors, restaurants, and consumers.


Asunto(s)
Antibacterianos/farmacología , Campylobacter coli/efectos de los fármacos , Desinfectantes/farmacología , Carne Roja/microbiología , Animales , Compuestos de Benzalconio/farmacología , Campylobacter coli/genética , Campylobacter coli/aislamiento & purificación , Clindamicina/farmacología , Farmacorresistencia Bacteriana , Eritromicina/farmacología , Contaminación de Alimentos/análisis , Pruebas de Sensibilidad Microbiana , Porcinos , Tetraciclina/farmacología
14.
Microbiol Resour Announc ; 8(21)2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31123012

RESUMEN

Salmonella enterica (non-Typhi) is one of the top five pathogens causing enteric infections worldwide. Draft whole-genome sequences of multidrug-resistant (MDR) Salmonella enterica serovar I 4,[5],12:i:- isolates from swine tissue samples collected at slaughter were evaluated for antimicrobial resistance genotypes. In recent years, Salmonella enterica serovar I 4,[5],12:i:- has increased in prevalence in humans and animals and has been linked to the consumption of contaminated pork.

15.
PLoS One ; 13(8): e0202100, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30096155

RESUMEN

Campylobacter coli is a bacterial species that is a major cause of diarrheal disease worldwide, and Campylobacter spp. are among the top 5 foodborne pathogens in the United States. During food production organic acids (OAs) are often used to remove bacteria from animal carcasses. The interactions of six OAs with 111 C. coli strains obtained from swine and retail pork chops were studied by determining the molar minimum inhibitory concentrations (MICMs) of the C. coli strains, and the pH at the MICMs. The Henderson-Hasselbalch equation was used to calculate the concentrations of the undissociated and dissociated OAs at the MICMs of the C. coli strains. The results for the 111 different C. coli strains obtained from different locations were treated as a single group for each OA since many of the C. coli strains behaved similarly to each different OA. Inhibition of C. coli was not dependent on pH or on the undissociated OA species, but C. coli inhibition correlated with the dissociated OA species. Therefore, if the concentration of the dissociated OAs decreases from optimum, one may then expect that C. coli bacteria would escape disinfection. The concentration of the dissociated OA should be carefully controlled in a carcass wash. We suggest maintaining a concentration of the dissociated acetic, butyric, citric, formic, lactic and propionic acids at 29, 23, 11, 35, 22 and 25 mM, respectively, when using a carcass wash with these OAs to remove C. coli bacteria. However, due to C. coli utilization of acetate, formate, lactate and propionate, these four OAs may not be the best choice to use for a carcass wash to remove C. coli contamination. Of the six OAs, citric acid was the most efficient at inhibiting C. coli.


Asunto(s)
Ácidos/farmacología , Campylobacter coli/efectos de los fármacos , Compuestos Orgánicos/farmacología , Campylobacter coli/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana
16.
J Sci Food Agric ; 98(8): 3175-3181, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29230814

RESUMEN

BACKGROUND: Nigella sativa L. (NS) is a plant containing bioactive constituents such as thymoquinone. Extracts of NS improve performance and reduce enteropathogen colonization in poultry and small ruminants, but studies with swine are lacking. In two different studies oral administration of NS extracts at doses equivalent to 0, 1.5 and 4.5 g kg-1 diet was assessed on piglet performance and intestinal carriage of wildtype Escherichia coli and Campylobacter, and Salmonella Typhimurium. RESULTS: Wildtype E. coli populations in the jejunal and rectal content collected 9 days after treatment began were decreased (P ≤ 0.05). Populations recovered from pigs treated with extract at 1.5 and 4.5 g kg-1 diet were 0.72-1.31 log10 units lower than the controls (ranging from 6.05 to 6.61 log10 CFU g-1 ). Wildtype Campylobacter and Salmonella Typhimurium were unaffected by NS treatment. Feed efficiency over the 9 days improved linearly (P < 0.05) from 3.88 with 0 NS-treated pigs to 1.47 and 1.41 with pigs treated with NS at 1.5 and 4.5 g kg-1 diet, respectively, possibly due to high glutamine/glutamic acid content of the NS extract. CONCLUSION: NS supplementation of weanling pigs improved feed efficiency and helped control intestinal E. coli during this vulnerable production phase. © 2017 Society of Chemical Industry.


Asunto(s)
Antibacterianos/administración & dosificación , Nigella sativa/química , Extractos Vegetales/administración & dosificación , Enfermedades de los Porcinos/microbiología , Porcinos/microbiología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Campylobacter/efectos de los fármacos , Campylobacter/crecimiento & desarrollo , Suplementos Dietéticos/análisis , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Femenino , Intestinos/efectos de los fármacos , Intestinos/microbiología , Masculino , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo , Porcinos/crecimiento & desarrollo , Enfermedades de los Porcinos/tratamiento farmacológico , Enfermedades de los Porcinos/prevención & control , Destete
17.
Bioresour Technol ; 229: 69-77, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28107724

RESUMEN

Ruminal methanogenesis is a digestive inefficiency resulting in the loss of dietary energy consumed by the host and contributing to environmental methane emission. Nitrate is being investigated as a feed supplement to reduce rumen methane emissions but safety and efficacy concerns persist. To assess potential synergies of co-administering sub-toxic amounts of nitrate and 3-nitro-1-propionate (NPA) on fermentation and Salmonella survivability with an alfalfa-based diet, ruminal microbes were cultured with additions of 8 or 16mM nitrate, 4 or 12mM NPA or their combinations. All treatments decreased methanogenesis compared to untreated controls but volatile fatty acid production and fermentation of hexose were also decreased. Nitrate was converted to nitrite, which accumulated to levels inhibitory to digestion. Salmonella populations were enriched in nitrate only-treated cultures but not in cultures co- or solely treated with NPA. These results reveal a need for dose optimization to safely reduce methane production with forage-based diets.


Asunto(s)
Fermentación/efectos de los fármacos , Medicago sativa/química , Viabilidad Microbiana/efectos de los fármacos , Nitratos/farmacología , Nitrocompuestos/farmacología , Propionatos/farmacología , Rumen/microbiología , Salmonella/metabolismo , Alimentación Animal/análisis , Animales , Bovinos , Nitratos/metabolismo , Nitritos/metabolismo , Filogenia , Salmonella/efectos de los fármacos , Salmonella/crecimiento & desarrollo
18.
Front Vet Sci ; 3: 62, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27563646

RESUMEN

Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effectively decreased methane production, by 35-87%, during in vitro fermentation by mixed cultures of ruminal microbes compared to fermentation by cultures incubated similarly with alfalfa. Methane production was further decreased during the incubation of mixed cultures also inoculated with Denitrobacterium detoxificans, a ruminal bacterium known to metabolize nitrate, NPA, and NPOH. Inhibition of methanogens within the mixed cultures was greatest with the NPA- and NPOH-containing forages. Hydrogen accumulated in all the mixed cultures incubated with forages containing nitrate, NPA or NPOH and was dramatically higher, exceeding 40 µmol hydrogen/mL, in mixed cultures incubated with NPA-containing forage but not inoculated with D. detoxificans. This possibly reflects the inhibition of hydrogenase-catalyzed uptake of hydrogen produced via conversion of 50 µmol added formate per milliliter to hydrogen. Accumulations of volatile fatty acids revealed compensatory changes in fermentation in mixed cultures incubated with the nitrate-, NPA-, and NPOH-containing forages as evidenced by lower accumulations of acetate, and in some cases, higher accumulations of butyrate and lower accumulations of ammonia, iso-buytrate, and iso-valerate compared to cultures incubated with alfalfa. Results reveal that nitrate, NPA, and NPOH that accumulate naturally in forages can be made available within ruminal incubations to inhibit methanogenesis. Further research is warranted to determine if diets can be formulated with nitrate-, NPA-, and NPOH-containing forages to achieve efficacious mitigation in ruminant methane emissions without adversely affecting fermentative efficiency or risking toxicity to animals.

19.
J Food Prot ; 79(7): 1135-42, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27357032

RESUMEN

Biting arthropods are implicated in the transdermal transmission of Salmonella to bovine peripheral lymph nodes, and such contamination can contribute to increased Salmonella prevalence in processed beef. Since horn flies can acquire Salmonella and then excrete the bacteria in their feces, on-animal fly infestations were conducted in this study to assess whether horn flies have a role in this bacterial transmission. Three Salmonella serotypes were used to assess fly acquisition from and excretion onto cattle. The results indicated that flies can acquire Salmonella from the hide, as assessed by recovery from homogenates of surfacesterilized flies, and that Salmonella persists for at least 5 days in the fly. Fly fecal excreta serves as a bacterial contaminant on the hide, and the overall mean probable estimate of the quantity shed was ≈10(5) most probable number per fly cage area. In 5 days, no transmission of the bacteria to bovine peripheral lymph nodes was evident, prompting an assessment of the effects of prolonged horn fly feeding on transmission. Three groups of animals were infested with flies that had consumed a blood meal containing Salmonella Senftenberg. After 5 days, the study was either terminated or the flies were removed and the cages replenished with unfed flies either once or twice over the course of an 11- or 19-day fly exposure period, respectively. A microlancet-inoculated positive-control animal was included in each group for comparison. The impact of prolonged horn fly feeding was evident, as 8% of lymph nodes cultured were positive from the 5-day exposure, whereas 50 and 42% were positive from 11- and 19-day exposures, respectively. Higher concentrations of Salmonella were recovered from fly-infested animals than from the microlancet-inoculated control, likely a result of repeated inoculations over time by flies versus a single introduction. The data described provide new insights into the transmission dynamics of Salmonella in cattle populations, highlighting a role for biting flies as an important reservoir.


Asunto(s)
Muscidae , Salmonella , Animales , Bovinos , Heces/microbiología , Ganglios Linfáticos
20.
Food Chem ; 173: 92-8, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25465999

RESUMEN

Thymol is a natural product that exhibits antimicrobial activity in vitro but in vivo results indicate that absorption within the proximal alimentary tract precludes its delivery to the distal gut. Presently, the anti-Campylobacter activity of thymol was compared against that of thymol-ß-D-glucopyranoside, the latter being resistant to absorption. When treated with 1 mM thymol, Campylobacter coli and jejuni were reduced during pure or co-culture with a ß-glycoside-hydrolysing Parabacteroides distasonis. Thymol-ß-D-glucopyranoside treatment (1 mM) did not reduce C. coli and jejuni during pure culture but did during co-culture with P. distasonis or during mixed culture with porcine or bovine faecal microbes possessing ß-glycoside-hydrolysing activity. Fermentation acid production was reduced by thymol-ß-D-glucopyranoside treatment, indicating that fermentation was inhibited, which may limit its application to just before harvest. Results suggest that thymol-ß-D-glucopyranoside or similar ß-glycosides may be able to escape absorption within the proximal gut and become activated by bacterial ß-glycosidases in the distal gut.


Asunto(s)
Antibacterianos/farmacología , Bacterias/metabolismo , Campylobacter/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Glicósidos/metabolismo , Timol/farmacología , Animales , Antibacterianos/química , Bovinos , Heces/microbiología , Fermentación , Porcinos , Timol/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...