Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 19(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34564172

RESUMEN

Paralytic shellfish toxins (PST) are found in the hepatopancreas of Southern Rock Lobster Jasus edwardsii from the east coast of Tasmania in association with blooms of the toxic dinoflagellate Alexandrium catenella. Tasmania's rock lobster fishery is one of the state's most important wild capture fisheries, supporting a significant commercial industry (AUD 97M) and recreational fishing sector. A comprehensive 8 years of field data collected across multiple sites has allowed continued improvements to the risk management program protecting public health and market access for the Tasmanian lobster fishery. High variability was seen in toxin levels between individuals, sites, months, and years. The highest risk sites were those on the central east coast, with July to January identified as the most at-risk months. Relatively high uptake rates were observed (exponential rate of 2% per day), similar to filter-feeding mussels, and meant that lobster accumulated toxins quickly. Similarly, lobsters were relatively fast detoxifiers, losing up to 3% PST per day, following bloom demise. Mussel sentinel lines were effective in indicating a risk of elevated PST in lobster hepatopancreas, with annual baseline monitoring costing approximately 0.06% of the industry value. In addition, it was determined that if the mean hepatopancreas PST levels in five individual lobsters from a site were <0.22 mg STX equiv. kg-1, there is a 97.5% probability that any lobster from that site would be below the bivalve maximum level of 0.8 mg STX equiv. kg-1. The combination of using a sentinel species to identify risk areas and sampling five individual lobsters at a particular site, provides a cost-effective strategy for managing PST risk in the Tasmanian commercial lobster fishery.


Asunto(s)
Bivalvos , Monitoreo del Ambiente , Toxinas Marinas/análisis , Palinuridae , Intoxicación por Mariscos/prevención & control , Animales , Demografía , Ecosistema , Explotaciones Pesqueras , Humanos , Enfermedades Profesionales/prevención & control , Reproducibilidad de los Resultados , Tasmania
2.
Harmful Algae ; 95: 101818, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32439058

RESUMEN

Up to 13.6 mg STX.2HCl equiv. kg-1 of paralytic shellfish toxins (PST) have been found in the hepatopancreas of Southern Rock Lobster, Jasus edwardsii, on the east coast of Tasmania. Blooms of the toxic dinoflagellate Alexandrium catenella have been reported in this region since 2012. Experimental work was undertaken to improve the understanding of the uptake and depuration mechanisms involved. Adult male lobsters were fed highly toxic mussels (6 mg STX.2HCl equiv. kg-1) sourced from the impacted area. The apparent feed intake of the lobster was positively correlated to increasing PST levels in the hepatopancreas. Toxins accumulated rapidly in the hepatopancreas reaching a maximum of 9.0 mg STX.2HCl equiv. kg-1, then depurated at a rate of 7% per day once toxic fed was removed. However, PST were not detected at significant levels in the haemolymph of these animals. Notable increases occurred in the relative amount of several PST analogues in the hepatopancreas, including GTX2&3, C1&2 and several decarbomoyl toxins in comparison to the profile observed in contaminated mussel feed. The concentration of PST in lobster antennal glands was two orders of magnitude lower than concentrations found in the hepatopancreas. This is the first report of PST in lobster antennal glands which, along with the gills, represent possible excretion routes for PST. Implications for biotoxin risk monitoring are: lobsters will continue to feed during bloom periods and high concentrations of PST can occur; animal collection should be frequent at the start of a bloom in case of a rapid accumulation of PST; and non-lethal sampling is not possible as haemolymph PST levels do not reflect what is in the hepatopancreas.


Asunto(s)
Bivalvos , Saxitoxina , Animales , Alimentos Marinos , Mariscos/análisis , Distribución Tisular
3.
Toxicon ; 158: 1-7, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30471380

RESUMEN

To date Paralytic shellfish toxin (PST) variants in cyanobacteria have primarily been characterized using high performance liquid chromatography coupled with fluorescence detection. In this study we re-evaluated the PST profiles of five cyanobacterial cultures (Dolichospermum circinale AWQC131C, Aphanizomenon sp. NH-5, Raphidiopsis raciborskii T3, Scytonema cf. crispum CAWBG524 and CAWBG72) and one environmental sample (Microseria wollei) using hydrophilic interaction liquid chromatography coupled with electrospray ionization tandem mass spectrometry. A total of 35 different PST variants were detected. D. circinale contained the highest number of variants (23), followed by S. cf. crispum CAWBG72 (21). Many of the variants detected in the cultures/environmental sample had not been reported from these strains previously: D. circinale (14 variants), S. cf. crispum CAWBG72 (16), S. cf. crispum CAWBG524 (9), Aphanizomenon sp. (9), R. raciborskii (7), and M. wollei (7). Of particular interest was the detection of M-toxins (Aphanizomenon sp., R. raciborskii, D. circinale). These have previously only been identified from shellfish where they were thought to be metabolites. Well-characterized PST variant profiles are essential for research investigating the genetic basis of PST production, and given that the toxicity of each variants differs, it will assist in refining risk assessments.


Asunto(s)
Cianobacterias/química , Toxinas Marinas/análisis , Cromatografía Liquida/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas en Tándem/métodos
4.
Toxicon ; 143: 44-50, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29326037

RESUMEN

In October 2012, paralytic shellfish toxins (PST) were detected in the hepatopancreas of Southern Rock Lobsters (Jasus edwardsii) collected from the east coast of Tasmania, Australia. This resulted in the first commercial closure in Australia for this species. Questions were raised on how the toxins were transferred to the lobsters, how long the toxins would persist, whether PST-contaminated hepatopancreas posed a risk to human health, and what management strategies could be applied. The aim of this study was to investigate whether PST-contaminated mussels are a potential vector enabling toxin accumulation in J. edwardsii and to collect information on toxin uptake, distribution and depuration rates and toxin profiles under controlled experimental settings. Lobsters were fed mussels naturally contaminated with PST for a period of 28 days in an experimental setting; following this, lobsters were allocated to either fed or starved treatment groups. PST were not detected in the tail tissue of lobsters at any stage of the experiment. Lobster hepatopancreas contained mean levels of 2.4 mg STX.2HCl eq/kg after 28 days of uptake, although substantial variability in total toxicity was observed. The PST profile of the hepatopancreas was similar to that of the contaminated mussels used as feed. Significant differences were noted in the PST depuration rates between fed and starved treatment groups. The daily depuration rate for total PST was estimated to be 0.019 and 0.013 mg STX.2HCl eq/kg for the fed and starved treatment groups respectively using a constant-rate decay model. After 42 days of depuration, total PST (STX equivalents) levels in the hepatopancreas of all lobsters were below 0.8 mg STX.2HCl eq/kg, which represents the regulatory level applied to bivalves. This result indicates that long-term holding to depurate PST may potentially be used as a risk management tool.


Asunto(s)
Palinuridae/metabolismo , Saxitoxina/metabolismo , Animales , Bivalvos/química , Cadena Alimentaria , Hepatopáncreas , Saxitoxina/análisis , Mariscos/análisis , Intoxicación por Mariscos/metabolismo , Tasmania , Distribución Tisular
5.
J Phycol ; 53(2): 283-297, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27885668

RESUMEN

Gambierdiscus is a genus of benthic dinoflagellates found worldwide. Some species produce neurotoxins (maitotoxins and ciguatoxins) that bioaccumulate and cause ciguatera fish poisoning (CFP), a potentially fatal food-borne illness that is common worldwide in tropical regions. The investigation of toxigenic species of Gambierdiscus in CFP endemic regions in Australia is necessary as a first step to determine which species of Gambierdiscus are related to CFP cases occurring in this region. In this study, we characterized five strains of Gambierdiscus collected from Heron Island, Australia, a region in which ciguatera is endemic. Clonal cultures were assessed using (i) light microscopy; (ii) scanning electron microscopy; (iii) DNA sequencing based on the nuclear encoded ribosomal 18S and D8-D10 28S regions; (iv) toxicity via mouse bioassay; and (v) toxin profile as determined by Liquid Chromatography-Mass Spectrometry. Both the morphological and phylogenetic data indicated that these strains represent a new species of Gambierdiscus, G. lapillus sp. nov. (plate formula Po, 3', 0a, 7″, 6c, 7-8s, 5‴, 0p, 2″″ and distinctive by size and hatchet-shaped 2' plate). Culture extracts were found to be toxic using the mouse bioassay. Using chemical analysis, it was determined that they did not contain maitotoxin (MTX1) or known algal-derived ciguatoxin analogs (CTX3B, 3C, CTX4A, 4B), but that they contained putative MTX3, and likely other unknown compounds.


Asunto(s)
Dinoflagelados/clasificación , Dinoflagelados/metabolismo , Animales , Australia , Intoxicación por Ciguatera , Ciguatoxinas/metabolismo , Dinoflagelados/genética , Toxinas Marinas/metabolismo , Oxocinas/metabolismo , Filogenia , Análisis de Secuencia de ADN
7.
Harmful Algae ; 31: 54-65, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28040111

RESUMEN

Species of the PST producing planktonic marine dinoflagellate genus Alexandrium have been intensively scrutinised, and it is therefore surprising that new taxa can still be found. Here we report a new species, Alexandrium diversaporum nov. sp., isolated from spherical cysts found at two sites in Tasmania, Australia. This species differs in its morphology from all previously reported Alexandrium species, possessing a unique combination of morphological features: the presence of 2 size classes of thecal pores on the cell surface, a medium cell size, the size and shape of the 6″, 1', 2⁗ and Sp plates, the lack of a ventral pore, a lack of anterior and posterior connecting pores, and a lack of chain formation. We determined the relationship of the two strains to other species of Alexandrium based on an alignment of concatenated SSU-ITS1, 5.8S, ITS2 and partial LSU ribosomal RNA sequences, and found A. diversaporum to be a sister group to Alexandrium leei with high support. A. leei shares several morphological features, including the relative size and shapes of the 6″, 1', 2⁗ and Sp plates and the fact that some strains of A. leei have two size classes of thecal pores. We examined A. diversaporum strains for saxitoxin production and found them to be non-toxic. The species lacked sequences for the domain A4 of sxtA, as has been previously found for non-saxitoxin producing species of Alexandrium.

8.
Steroids ; 75(13-14): 1106-12, 2010 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-20654641

RESUMEN

BACKGROUND: The accurate measurement of 25-hydoxy vitamin D (25OH-D) in serum has been a challenge for many years. We developed a liquid chromatography tandem mass spectrometry (LC Tandem MS) assay for the quantitative determination of 25OH-D(2) and 25OH-D(3) in serum. The new method was compared with two widely used commercially available immunoassays. METHODS: Sample preparation involved protein precipitation with acetonitrile containing deuterated forms of the target species as internal standards. An API 5000 mass spectrometer coupled with a photoionization source was used for quantitation. The performance of the new LC Tandem MS assay was compared with a radioimmunoassay (RIA, Diasorin) and a chemiluminescence immunoassay (ECLIA, Roche Diagnostics), analysing serum obtained from 152 individuals. RESULTS: Using 100 µl of serum, the LC Tandem MS assay had a limit of quantitation of 1.3 nmol/L for both 25OH-D(2) and 25OH-D(3) with a linear response between 1.3 and 625 nmol/L and accuracy of between 95 and 124%. Intra- and inter-assay precision were ≤7% and ≤4%, respectively. Measurement of 25OH-D levels in 152 serum samples gave run averages of 71, 56 and 62 nmol/L for LC Tandem MS, ECLIA and RIA, respectively. Correlations between the various methods were: LC Tandem MS vs. RIA: r=0.931; LC Tandem MS vs. ECLIA: r=0.784; RIA vs. ECLIA: r=0.787. The LC Tandem MS method had a positive proportional bias of 26% over the RIA, whereas the ECLIA showed variable differences. CONCLUSION: The new LC Tandem MS assay is accurate and precise at physiologically relevant 25OH-D concentrations, and compares favourably with the RIA. In contrast, the ECLIA shows variable bias with the other assays tested.


Asunto(s)
25-Hidroxivitamina D 2/sangre , Análisis Químico de la Sangre/métodos , Calcifediol/sangre , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...