Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(21): 18626-18636, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37273595

RESUMEN

During hydraulic fracturing, the oxic hydraulic fracturing fluid physically and chemically alters the fracture surface and creates a "reaction-altered zone". Recent work has shown that most of the physicochemical changes occur on the shale fracture surface, and the depth of reaction penetration is small over the course of shut-in time. In this work, we investigate the physicochemical evolution of a calcite-rich fracture surface during acidized brine injection in the presence of applied compressive stress. A calcite-rich Wolfcamp shale sample is selected, and a smooth fracture is generated. An acidized equilibrated brine is then injected for 16 h, and the pressure change is measured. A series of experimental measurements are done before and after the flood to note the change in physicochemical properties of the fracture. High resolution computed tomography scanning is conducted to observe the fracture aperture growth, which shows an increase of ∼8.3 µm during the course of injection. The fracture topography, observed using a surface roughness analyzer, is shown to be smoother after the injection. The calcite dissolution signature, i.e., surface stripping of calcite, is observed by X-ray fluorescence, and mass spectrometry of the timer-series of the effluent also points in the same direction. We conclude that mineral dissolution is the primary mechanism through which the fracture aperture is growing. The weakening of the fracture surface, along with the applied compressive stresses, promotes erosion of the surface generating fines which reduce the fracture conductivity during the course of injection. In this work, we also highlight the importance of rock mineralogy on the fracture evolution mechanism and determine the thickness of the "reaction altered" zone.

2.
Heliyon ; 9(2): e13727, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36865458

RESUMEN

Carbofuran is a widely used poisonous pesticide around the world that helps to control insects during farming. Upon oral ingestion to humans, it exaggerates oxidative stress in various organs like the liver, brain, kidney, and heart. Several studies reported that oxidative stress in the liver initiates and propagates hepatic cell necrosis, ultimately resulting in hepatotoxicity. It also reported that coenzyme Q10 (CoQ10) can neutralize oxidative stress due to its antioxidant properties. However, the hepatoprotective and nephroprotective role of CoQ10 against carbofuran toxicity has not been investigated. Therefore, the present study aimed to evaluate the hepatoprotective and nephroprotective role of CoQ10 in carbofuran-induced hepatotoxicity and nephrotoxicity in a mouse model for the first time. We determined the blood serum diagnostic markers, oxidative stress parameters, antioxidant system, and histopathological characteristics of liver and kidney tissues. The administration of 100 mg/kg of CoQ10 in carbofuran-treated rats significantly attenuated AST, ALT, ALP, serum creatinine, and BUN levels. Moreover, CoQ10 (100 mg/kg) remarkably altered the level of NO, MDA, AOPP, GSH, SOD, and CAT in both the liver and kidney. The histopathological data also unveiled that CoQ10 treatment prevented inflammatory cell infiltration in carbofuran-exposed rats. Therefore, our findings infer that CoQ10 may effectively protect liver and kidney tissues against carbofuran-induced oxidative hepatotoxicity and nephrotoxicity.

3.
PLoS One ; 17(6): e0270123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35767571

RESUMEN

Aging-induced memory impairment is closely associated with oxidative stress. D-Galactose (D-gal) evokes severe oxidative stress and mimics normal aging in animals. Curcumin, a natural flavonoid, has potent antioxidant and anti-aging properties. There are several proteins like glutathione S-transferase A1 (GSTA1), glutathione S-transferase omega-1 (GSTO1), kelch-like ECH-associated protein 1 (KEAP1), beta-secretase 1 (BACE1), and amine oxidase [flavin-containing] A (MAOA) are commonly involved in oxidative stress and aging. This study aimed to investigate the interaction of curcumin to these proteins and their subsequent effect on aging-associated memory impairment in two robust animal models: D-Gal and normal aged (NA) mice. The aging mice model was developed by administering D-gal intraperitoneally (i.p). Mice (n = 64) were divided into the eight groups (8 mice in each group): Vehicle, Curcumin-Control, D-gal (100mg/kg; i.p), Curcumin + D-gal, Astaxanthin (Ast) + D-gal, Normal Aged (NA), Curcumin (30mg/kg Orally) + NA, Ast (20mg/kg Orally) + NA. Retention and freezing memories were assessed by passive avoidance (PA) and contextual fear conditioning (CFC). Molecular docking was performed to predict curcumin binding with potential molecular targets. Curcumin significantly increased retention time (p < 0.05) and freezing response (p < 0.05) in PA and CFC, respectively. Curcumin profoundly ameliorated the levels of glutathione, superoxide dismutase, catalase, advanced oxidation protein products, nitric oxide, and lipid peroxidation in mice hippocampi. In silico studies revealed favorable binding energies of curcumin with GSTA1, GSTO1, KEAP1, BACE1, and MAOA. Curcumin improves retention and freezing memory in D-gal and nature-induced aging mice. Curcumin ameliorates the levels of oxidative stress biomarkers in mice. Anti-aging effects of curcumin could be attributed to, at least partially, the upregulation of antioxidant enzymes through binding with GSTA1, GSTO1, KEAP1, and inhibition of oxidative damage through binding with BACE1 and MAOA.


Asunto(s)
Curcumina , Galactosa , Envejecimiento/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Antioxidantes/efectos adversos , Ácido Aspártico Endopeptidasas/metabolismo , Curcumina/efectos adversos , Galactosa/farmacología , Glutatión Transferasa/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo
4.
Environ Sci Technol ; 55(3): 1377-1394, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33428391

RESUMEN

Hydraulic fracturing of unconventional hydrocarbon resources involves the sequential injection of a high-pressure, particle-laden fluid with varying pH's to make commercial production viable in low permeability rocks. This process both requires and produces extraordinary volumes of water. The water used for hydraulic fracturing is typically fresh, whereas "flowback" water is typically saline with a variety of additives which complicate safe disposal. As production operations continue to expand, there is an increasing interest in treating and reusing this high-salinity produced water for further fracturing. Here we review the relevant transport and geochemical properties of shales, and critically analyze the impact of water chemistry (including produced water) on these properties. We discuss five major geochemical mechanisms that are prominently involved in the temporal and spatial evolution of fractures during the stimulation and production phase: shale softening, mineral dissolution, mineral precipitation, fines migration, and wettability alteration. A higher salinity fluid creates both benefits and complications in controlling these mechanisms. For example, higher salinity fluid inhibits clay dispersion, but simultaneously requires more additives to achieve appropriate viscosity for proppant emplacement. In total this review highlights the nuances of enhanced hydrogeochemical shale stimulation in relation to the choice of fracturing fluid chemistry.


Asunto(s)
Fracking Hidráulico , Minerales , Gas Natural , Yacimiento de Petróleo y Gas , Aguas Residuales , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA