Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 8(11): e11795, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36444247

RESUMEN

Even though nanotechnology is extensively applied in agriculture, biochemistry, medicine and many other sectors, it is a developing field that conforms to new and more complex applications in food systems as compared to other technologies. It offers a viable strategy for integrating cutting-edge technology into a wide range of operations related to the production, development, fabrication, packaging, storage and distribution of food. The most fundamentally sophisticated technology in nano-based food science, nanoparticles deal with a wide range of nanostructured materials and nano methods, including nanofood, nanotubes, nanocomposites, nano packaging, nanocapsules, nanosensors, liposomes, nanoemulsions, polymeric nanoparticles and nanoencapsulation. This method is developed to increase food solubility and shelf life, availability of bioactive chemical, the protection of food constituents, nutritional supplementation, fortification and food or constituent delivery. Additionally, it serves as an antibacterial agent by generating reactive oxygen species (ROS) which cause bacterial DNA damage, protein denaturation and cell damage. Although the use of nanotechnology in food applications is advancing, there are certain negative or dangerous effects on health related to the toxicity and dangers of ingesting nanoparticles in food. The use of nanotechnology in the food industry, notably in processing, preservation and packaging, with its promising future, was addressed in this study. The toxicity of nanoparticles in food as well as its development in food safety assessments with certain areas of concern were also reviewed.

2.
Heliyon ; 8(7): e09948, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35859642

RESUMEN

Scientists are indeed fascinated by the pharmacologically important chemicals found in medicinal plants. Citrus fruits possess several curing agents for the prevention of diseases. Therefore, experiments were carried out to test the antibacterial activity of methanolic extracts of peels from various locally available citrus fruits such as citron (Citrus medica), satkora (Citrus macroptera) and adajamir (Citrus assamensis) against Bacillus spp. and E. coli using the disc diffusion method. Different physicochemical characteristics of fruit juice were also determined. Methanolic extract of satkora peel had the highest antibacterial activity of 2.2 and 2.6 cm while adajamir had the lowest antibacterial activity of 1.7 and 2.1 cm as ZOI against Bacillus spp. and E. coli, respectively. In the case of pH and total soluble solids (TSS), the three citrus varieties showed a small variation where satkora showed the highest total phenolic content (TPC), vitamin C content, and antioxidant activity than the others. Citrus fruits can be exploited as antibacterial and antioxidant ingredients in food and nutraceuticals, according to the findings of this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA