Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Environ Int ; 183: 108374, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101104

RESUMEN

Treated municipal wastewater (TMW) can provide a reliable source of irrigation water for crops, which is especially important in arid areas where water resources are limited or prone to drought. Nonetheless, TMW may contain residual antibiotics, potentially exposing the crops to these substances. The goal of this study was to investigate the dissemination of antibiotics resistance genes (ARGs) in the soil-plant-earthworm continuum after irrigation of spinach and radish plants with TMW containing trimethoprim, sulfamethoxazole, and sulfapyridine in a greenhouse experiment, followed by feeding of earthworms with harvested plant materials. Our results showed that antibiotic resistance genes (ARGs) were enriched in the soil-plant-earthworm microbiomes irrigated with TMW and TMW spiked with higher concentrations of antibiotics. The number of ARGs and antibiotic-resistant bacteria (ARB) enrichment varied with plant type, with spinach harboring a significantly higher amount of ARGs and ARB compared to radish. Our data showed that bulk and rhizosphere soils of spinach and radish plants irrigated with MilliQ water, TMW, TMW10, or TMW100 had significant differences in bacterial community (p < 0.001), ARG (p < 0.001), and virulence factor gene (VFG) (p < 0.001) diversities. The abundance of ARGs significantly decreased from bulk soil to rhizosphere to phyllosphere and endosphere. Using metagenome assembled genomes (MAGs), we recovered many bacterial MAGs and a near complete genome (>90 %) of bacterial MAG of genus Leclercia adecarboxylata B from the fecal microbiome of earthworm that was fed harvested radish tubers and spinach leaves grown on TMW10 irrigated waters, and this bacterium has been shown to be an emerging pathogen causing infection in immunocompromised patients that may lead to health complications and death. Therefore, crops irrigated with TMW containing residual antibiotics and ARGs may lead to increased incidences of enrichment of ARB in the soil-plant-earthworm continuum.


Asunto(s)
Oligoquetos , Suelo , Animales , Humanos , Genes Bacterianos , Antagonistas de Receptores de Angiotensina , Antibacterianos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias/genética , Farmacorresistencia Microbiana/genética , Aguas Residuales , Agua , Microbiología del Suelo
3.
mBio ; : e0147623, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37931127

RESUMEN

Changing climatic conditions influence parameters associated with the growth of pathogenic Vibrio spp. in the environment and, hence, are linked to increased incidence of vibriosis. Between 1992 and 2022, a long-term increase in Vibrio spp. infections was reported in Florida, USA. Furthermore, a spike in Vibrio spp. infections was reported post Hurricane Ian, a category five storm that made landfall in Florida on 28 September 2022. During October 2022, water and oyster samples were collected from three stations in Lee County in an area significantly impacted by Ian. Vibrio spp. were isolated, and whole-genome sequencing and phylogenetic analysis were done, with a focus on Vibrio parahaemolyticus and Vibrio vulnificus to provide genetic insight into pathogenic strains circulating in the environment. Metagenomic analysis of water samples provided insight with respect to human health-related factors, notably the detection of approximately 12 pathogenic Vibrio spp., virulence and antibiotic resistance genes, and mobile genetic elements, including the SXT/R391 family of integrative conjugative elements. Environmental parameters were monitored as part of a long-term time series analysis done using satellite remote sensing. In addition to anomalous rainfall and storm surge, changes in sea surface temperature and chlorophyll concentration during and after Ian favored the growth of Vibrio spp. In conclusion, genetic analysis coupled with environmental data and remote sensing provides useful public health information and, hence, constitute a valuable tool to proactively detect and characterize environmental pathogens, notably vibrios. These data can aid the development of early warning systems by yielding a larger source of information for public health during climate change. Evidence suggests warming temperatures are associated with the spread of potentially pathogenic Vibrio spp. and the emergence of human disease globally. Following Hurricane Ian, the State of Florida reported a sharp increase in the number of reported Vibrio spp. infections and deaths. Hence, monitoring of pathogens, including vibrios, and environmental parameters influencing their occurrence is critical to public health. Here, DNA sequencing was used to investigate the genomic diversity of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Florida coastal waters post Hurricane Ian, in October 2022. Additionally, the microbial community of water samples was profiled to detect the presence of Vibrio spp. and other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Long-term environmental data analysis showed changes in environmental parameters during and after Ian were optimal for the growth of Vibrio spp. and related pathogens. Collectively, results will be used to develop predictive risk models during climate change.

4.
J Food Prot ; 86(11): 100176, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37805044

RESUMEN

Investigating the chicken microbiome is important to establish control measures for pathogens to protect consumers. This study aimed at evaluating the comparative efficiency of human pathogen detection through 16S rRNA sequencing of organic and conventional chickens processed using whole carcass enrichment (WCE) and rinse (WCR) methods. Organic and conventional whole broiler carcasses (n = 31) were vigorously shaken with 500 mL buffered peptone water (BPW). For the rinse method, a 30 mL aliquot was mixed with 30 mL of BPW. The rest of the sample, including the carcass, was used for the enrichment method. All samples were incubated at 37°C for 24 h. The samples were divided into five groups [Negative Control: only BPW without chicken (n = 5), Organic-Rinsed (n = 7), -Enriched (n = 8), Conventional-Rinsed (n = 7), and -Enriched (n = 9)]. Fifty milliliters of each sample were subjected to DNA extraction followed by 16S rRNA sequencing. Proteobacteria and Firmicutes predominated the microbiota of both conventional and organic chickens, followed by low abundances of Bacteroidetes and Fusobacterium. While the abundance of Proteobacteria and Firmicutes remained unchanged in organic chicken irrespective of the methods used, a noticeable shift in the Proteobacteria and Firmicutes ratio (59%:39% in rinsed to 38%:60% in enriched) was observed in conventional chicken. Furthermore, the choice of method did not yield any differences in Abundance-Based Coverage Estimator, and Jackknife, among conventional and organic chickens but resulted in a statistically significant difference in the Shannon, Simpson, Chao1, and phylogenetic diversity indices (p < 0.05). The relative abundance of Salmonella and Campylobacter was less than 0.1%. The results suggested the WCE method provides a broad range of information on the chicken microbiome.


Asunto(s)
Pollos , Microbiota , Animales , Humanos , Pollos/microbiología , ARN Ribosómico 16S , Manipulación de Alimentos/métodos , Filogenia
5.
Sci Rep ; 13(1): 15976, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749192

RESUMEN

The Bay of Bengal, the world's largest bay, is bordered by populous countries and rich in resources like fisheries, oil, gas, and minerals, while also hosting diverse marine ecosystems such as coral reefs, mangroves, and seagrass beds; regrettably, its microbial diversity and ecological significance have received limited research attention. Here, we present amplicon (16S and 18S) profiling and shotgun metagenomics data regarding microbial communities from BoB's eastern coast, viz., Saint Martin and Cox's Bazar, Bangladesh. From the 16S barcoding data, Proteobacteria appeared to be the dominant phylum in both locations, with Alteromonas, Methylophaga, Anaerospora, Marivita, and Vibrio dominating in Cox's Bazar and Pseudoalteromonas, Nautella, Marinomonas, Vibrio, and Alteromonas dominating the Saint Martin site. From the 18S barcoding data, Ochrophyta, Chlorophyta, and Protalveolata appeared among the most abundant eukaryotic divisions in both locations, with significantly higher abundance of Choanoflagellida, Florideophycidae, and Dinoflagellata in Cox's Bazar. The shotgun sequencing data reveals that in both locations, Alteromonas is the most prevalent bacterial genus, closely paralleling the dominance observed in the metabarcoding data, with Methylophaga in Cox's Bazar and Vibrio in Saint Martin. Functional annotations revealed that the microbial communities in these samples harbor genes for biofilm formation, quorum sensing, xenobiotics degradation, antimicrobial resistance, and a variety of other processes. Together, these results provide the first molecular insight into the functional and phylogenetic diversity of microbes along the BoB coast of Bangladesh. This baseline understanding of microbial community structure and functional potential will be critical for assessing impacts of climate change, pollution, and other anthropogenic disturbances on this ecologically and economically vital bay.


Asunto(s)
Alteromonas , Dinoflagelados , Microbiota , Bahías , Filogenia
6.
Appl Environ Microbiol ; 89(6): e0030723, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37222620

RESUMEN

Incidence of vibriosis is rising globally, with evidence that changing climatic conditions are influencing environmental factors that enhance growth of pathogenic Vibrio spp. in aquatic ecosystems. To determine the impact of environmental factors on occurrence of pathogenic Vibrio spp., samples were collected in the Chesapeake Bay, Maryland, during 2009 to 2012 and 2019 to 2022. Genetic markers for Vibrio vulnificus (vvhA) and Vibrio parahaemolyticus (tlh, tdh, and trh) were enumerated by direct plating and DNA colony hybridization. Results confirmed seasonality and environmental parameters as predictors. Water temperature showed a linear correlation with vvhA and tlh, and two critical thresholds were observed, an initial increase in detectable numbers (>15°C) and a second increase when maximum counts were recorded (>25°C). Temperature and pathogenic V. parahaemolyticus (tdh and trh) were not strongly correlated; however, the evidence showed that these organisms persist in oyster and sediment at colder temperatures. Salinity (10 to 15 ppt), total chlorophyll a (5 to 25 µg/L), dissolved oxygen (5 to 10 mg/L), and pH (8) were associated with increased abundance of vvhA and tlh. Importantly, a long-term increase in Vibrio spp. numbers was observed in water samples between the two collection periods, specifically at Tangier Sound (lower bay), with the evidence suggesting an extended seasonality for these bacteria in the area. Notably, tlh showed a mean positive increase that was ca. 3-fold overall, with the most significant increase observed during the fall. In conclusion, vibriosis continues to be a risk in the Chesapeake Bay region. A predictive intelligence system to assist decision makers, with respect to climate and human health, is warranted. IMPORTANCE The genus Vibrio includes pathogenic species that are naturally occurring in marine and estuarine environments globally. Routine monitoring for Vibrio species and environmental parameters influencing their incidence is critical to provide a warning system for the public when the risk of infection is high. In this study, occurrence of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Chesapeake Bay water, oysters, and sediment samples collected over a 13-year period was analyzed. The results provide a confirmation of environmental predictors for these bacteria, notably temperature, salinity, and total chlorophyll a, and their seasonality of occurrence. New findings refine environmental parameter thresholds of culturable Vibrio species and document a long-term increase in Vibrio populations in the Chesapeake Bay. This study provides a valuable foundation for development of predicative risk intelligence models for Vibrio incidence during climate change.


Asunto(s)
Ostreidae , Vibriosis , Vibrio parahaemolyticus , Vibrio vulnificus , Animales , Humanos , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética , Clorofila A , Ecosistema , Ostreidae/microbiología , Vibriosis/epidemiología , Agua
7.
Sci Total Environ ; 872: 162194, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36781130

RESUMEN

Livestock manure, dairy lagoon effluent, and treated wastewater are known reservoirs of antibiotic resistance genes (ARGs), antibiotic-resistant bacteria (ARB), and virulence factor genes (VFGs), and their application to agricultural farmland could be a serious public health threat. However, their dissemination to agricultural lands and impact on important geochemical pathways such as the nitrogen (N) cycle have not been jointly explored. In this study, shotgun metagenomic sequencing and analyses were performed to examine the diversity and composition of microbial communities, ARGs, VFGs, and N cycling genes in different livestock manure/lagoon and treated wastewater collected from concentrated animal feeding operations (CAFOs) and a municipal wastewater treatment plant along the west coast of the United States. Multivariate analysis showed that diversity indices of bacterial taxa from the different microbiomes were not significantly different based on InvSimpson (P = 0.05), but differences in ARG mechanisms were observed between swine manure and other microbiome sources. Comparative resistome profiling showed that ARGs in microbiome samples belonged to four core resistance classes: aminoglycosides (40-55 %), tetracyclines (30-45 %), beta-lactam-resistance (20-35 %), macrolides (18-30 %), and >50 % of the VFGs that the 24 microbiomes harbored were phyletically affiliated with two bacteria, Bacteroidetes fragilis and Enterobacter aerogenes. Network analysis based on Spearman correlation showed co-occurrence patterns between several genes such as transporter-gene and regulator, efflux pump and involved-in-polymyxin- resistance, aminoglycoside, beta-lactam, and macrolide with VFGs and bacterial taxa such as Firmicutes, Candidatus Themoplasmatota, Actinobacteria, and Bacteroidetes. Metabolic reconstruction of metagenome-assembled genome (MAGs) analysis showed that the most prevalent drug resistance mechanisms were associated with carbapenem resistance, multidrug resistance (MDR), and efflux pump. Bacteroidales was the main taxa involved in dissimilatory nitrate reduction (DNRA) in dairy lagoon effluent. This study demonstrates that the dissemination of waste from these sources can increase the spread of ARGs, ARB, and VFGs into agricultural lands, negatively impacting both soil and human health.


Asunto(s)
Genes Bacterianos , Aguas Residuales , Humanos , Animales , Porcinos , Antibacterianos/farmacología , Ganado , Farmacorresistencia Bacteriana/genética , Estiércol/análisis , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias , Microbiología del Suelo , beta-Lactamas/análisis
8.
Sci Rep ; 12(1): 16967, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217008

RESUMEN

Periodical cicadas (Hemiptera: Magicicada) have coevolved with obligate bacteriome-inhabiting microbial symbionts, yet little is known about gut microbial symbiont composition or differences in composition among allochronic Magicicada broods (year classes) which emerge parapatrically or allopatrically in the eastern United States. Here, 16S rRNA amplicon sequencing was performed to determine gut bacterial community profiles of three periodical broods, including II (Connecticut and Virginia, 2013), VI (North Carolina, 2017), and X (Maryland, 2021, and an early emerging nymph collected in Ohio, 2017). Results showed similarities among all nymphal gut microbiomes and between morphologically distinct 17-year Magicicada, namely Magicicada septendecim (Broods II and VI) and 17-year Magicicada cassini (Brood X) providing evidence of a core microbiome, distinct from the microbiome of burrow soil inhabited by the nymphs. Generally, phyla Bacteroidetes [Bacteroidota] (> 50% relative abundance), Actinobacteria [Actinomycetota], or Proteobacteria [Pseudomonadota] represented the core. Acidobacteria and genera Cupriavidus, Mesorhizobium, and Delftia were prevalent in nymphs but less frequent in adults. The primary obligate endosymbiont, Sulcia (Bacteroidetes), was dominant amongst core genera detected. Chryseobacterium were common in Broods VI and X. Chitinophaga, Arthrobacter, and Renibacterium were common in Brood X, and Pedobacter were common to nymphs of Broods II and VI. Further taxonomic assignment of unclassified Alphaproteobacteria sequencing reads allowed for detection of multiple copies of the Hodgkinia 16S rRNA gene, distinguishable as separate operational taxonomic units present simultaneously. As major emergences of the broods examined here occur at 17-year intervals, this study will provide a valuable comparative baseline in this era of a changing climate.


Asunto(s)
Microbioma Gastrointestinal , Hemípteros , Animales , Bacterias/genética , Microbioma Gastrointestinal/genética , Hemípteros/genética , ARN Ribosómico 16S/genética , Suelo , Estados Unidos
9.
Genomics ; 114(6): 110497, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36182010

RESUMEN

The goal of this study was to identify the genomic variants and determine molecular epidemiology of SARS-CoV-2 virus during the early pandemic stage in Bangladesh. Viral RNA was extracted, converted to cDNA, and amplified using Ion AmpliSeq™ SARS-CoV-2 Research Panel. 413 unique mutants from 151 viral isolates were identified. 80% of cases belongs to 8 mutants: 241C toT, 1163A toT, 3037C toT, 14408C toT, 23403A toG, 28881G toA, 28,882 G toA, and 28883G toC. Observed dominance of GR clade variants that have strong presence in Europe, suggesting European channel a possible entry route. Among 37 genomic mutants significantly associated with clinical symptoms, 3916CtoT (associated with sore-throat), 14408C to T (associated with cough-protection), 28881G to A, 28882G to A, and 28883G to C (associated with chest pain) were notable. These findings may inform future research platforms for disease management and epidemiological study.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Genómica , China
10.
J Food Prot ; 85(2): 238-253, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614175

RESUMEN

ABSTRACT: Cold-smoked salmon is a ready-to-eat seafood product of high commercial importance. The processing and storage steps facilitate the introduction, growth, and persistence of foodborne pathogens and spoilage bacteria. The growth of commensal bacteria during storage and once the product is opened also influence the quality and safety of cold-smoked salmon. Here we investigated the microbial community through targeted 16S rRNA gene and shotgun metagenomic sequencing as means to better understand the interactions among bacteria in cold-smoked salmon. Cold-smoked salmon samples were tested over 30 days of aerobic storage at 4°C and cultured at each time point in a buffered Listeria enrichment broth (BLEB) commonly used to detect Listeria in foods. The microbiomes were composed of Firmicutes and Proteobacteria, namely, Carnobacterium, Brochothrix, Pseudomonas, Serratia, and Psychrobacter. Pseudomonas species were the most diverse species, with 181 taxa identified. In addition, we identified potential homologs to 10 classes of bacteriocins in microbiomes of cold-smoked salmon stored at 4°C and corresponding BLEB culture enrichments. The findings presented here contribute to our understanding of microbiome population dynamics in cold-smoked salmon, including changes in bacterial taxa during aerobic cold storage and after culture enrichment. This may facilitate improvements to pathogen detection and quality preservation of this food.


Asunto(s)
Listeria monocytogenes , Microbiota , Animales , Frío , Recuento de Colonia Microbiana , Microbiología de Alimentos , Conservación de Alimentos , Dinámica Poblacional , ARN Ribosómico 16S , Salmón/microbiología , Alimentos Marinos/microbiología , Humo
11.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34253606

RESUMEN

Other than exposure to gluten and genetic compatibility, the gut microbiome has been suggested to be involved in celiac disease (CD) pathogenesis by mediating interactions between gluten/environmental factors and the host immune system. However, to establish disease progression markers, it is essential to assess alterations in the gut microbiota before disease onset. Here, a prospective metagenomic analysis of the gut microbiota of infants at risk of CD was done to track shifts in the microbiota before CD development. We performed cross-sectional and longitudinal analyses of gut microbiota, functional pathways, and metabolites, starting from 18 mo before CD onset, in 10 infants who developed CD and 10 matched nonaffected infants. Cross-sectional analysis at CD onset identified altered abundance of six microbial strains and several metabolites between cases and controls but no change in microbial species or pathway abundance. Conversely, results of longitudinal analysis revealed several microbial species/strains/pathways/metabolites occurring in increased abundance and detected before CD onset. These had previously been linked to autoimmune and inflammatory conditions (e.g., Dialister invisus, Parabacteroides sp., Lachnospiraceae, tryptophan metabolism, and metabolites serine and threonine). Others occurred in decreased abundance before CD onset and are known to have anti-inflammatory effects (e.g., Streptococcus thermophilus, Faecalibacterium prausnitzii, and Clostridium clostridioforme). Additionally, we uncovered previously unreported microbes/pathways/metabolites (e.g., Porphyromonas sp., high mannose-type N-glycan biosynthesis, and serine) that point to CD-specific biomarkers. Our study establishes a road map for prospective longitudinal study designs to better understand the role of gut microbiota in disease pathogenesis and therapeutic targets to reestablish tolerance and/or prevent autoimmunity.


Asunto(s)
Enfermedad Celíaca/microbiología , Microbioma Gastrointestinal , Autoinmunidad , Biomarcadores/metabolismo , Enfermedad Celíaca/metabolismo , Preescolar , Estudios Transversales , Femenino , Microbioma Gastrointestinal/genética , Interacciones Microbiota-Huesped , Humanos , Lactante , Inflamación , Estudios Longitudinales , Masculino , Redes y Vías Metabólicas , Metaboloma , Metagenómica , Estudios Prospectivos
12.
Front Water ; 3: 626849, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34263162

RESUMEN

Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E. coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E. coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds (E. coli, 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E. coli, enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters.

13.
Front Public Health ; 9: 692166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307285

RESUMEN

Aeromonads are aquatic bacteria associated with frequent outbreaks of diarrhea in coastal Bangladesh, but their potential risks from environmental sources have remained largely unexplored. This study, over 2 years, examined homestead pond waters in the region for monthly dynamics and diversity of Aeromonas spp. The bacterial counts showed bi-modal annual growth peak, pre- and post-monsoon, strongly correlating (p < 0.0005) with temperature. Of 200 isolates characterized, Aeromonas veronii bv. sobria (27%) was predominant among co-existent Aeromonas schubertii (20%), Aeromonas hydrophila (17%), Aeromonas caviae (13%), and three more. PCR screening of virulence-related genes identified 15 genotypes (I to XV), however, enterotoxigenicity in animal model was observed for five genotypes, ca. 18% (nine of 50) strains, prevalent in A. veronii bv. sobria, A. hydrophila, and A. caviae. Pathogenic strains were distinguishable by possessing at least three of the major virulence genes: ascV, hlyA, ela, ast, and alt, together with accessory virulence factors. PFGE of XbaI-digested genomic DNA revealed high genetic diversity and distant lineage of potentially toxigenic clones. Therefore, along with increased global warming, Aeromonas spp. having multi-factorial virulence potential in coastal ponds that serve as drinking water sources pose a potential health risk, and underscores the need for routine monitoring.


Asunto(s)
Aeromonas , Estanques , Aeromonas/genética , Animales , Bangladesh/epidemiología , Virulencia/genética , Agua
14.
Front Immunol ; 12: 672353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995413

RESUMEN

Invasive foodborne Listeria monocytogenes infection causes gastroenteritis, septicemia, meningitis, and chorioamnionitis, and is associated with high case-fatality rates in the elderly. It is unclear how aging alters gut microbiota, increases risk of listeriosis, and causes dysbiosis post-infection. We used a geriatric murine model of listeriosis as human surrogate of listeriosis for aging individuals to study the effect of aging and L. monocytogenes infection. Aging and listeriosis-induced perturbation of gut microbiota and disease severity were compared between young-adult and old mice. Young-adult and old mice were dosed intragastrically with L. monocytogenes. Fecal pellets were collected pre- and post-infection for microbiome analysis. Infected old mice had higher Listeria colonization in liver, spleen, and feces. Metagenomics analyses of fecal DNA-sequences showed increase in α-diversity as mice aged, and infection reduced its diversity. The relative abundance of major bacterial phylum like, Bacteroidetes and Firmicutes remained stable over aging or infection, while the Verrucomicrobia phylum was significantly reduced only in infected old mice. Old mice showed a marked reduction in Clostridaiceae and Lactobacillaceae bacteria even before infection when compared to uninfected young-adult mice. L. monocytogenes infection increased the abundance of Porphyromonadaceae and Prevotellaceae in young-adult mice, while members of the Ruminococcaceae and Lachnospiraceae family were significantly increased in old mice. The abundance of the genera Blautia and Alistipes were significantly reduced post-infection in young-adult and in old mice as compared to their uninfected counterparts. Butyrate producing, immune-modulating bacterial species, like Pseudoflavonifractor and Faecalibacterium were significantly increased only in old infected mice, correlating with increased intestinal inflammatory mRNA up-regulation from old mice tissue. Histologic analyses of gastric tissues showed extensive lesions in the Listeria-infected old mice, more so in the non-glandular region and fundus than in the pylorus. Commensal species like Lactobacillus, Clostridiales, and Akkermansia were only abundant in infected young-adult mice but their abundance diminished in the infected old mice. Listeriosis in old mice enhances the abundance of butyrate-producing inflammatory members of the Ruminococcaceae/Lachnospiraceae bacteria while reducing/eliminating beneficial commensals in the gut. Results of this study indicate that, aging may affect the composition of gut microbiota and increase the risk of invasive L. monocytogenes infection.


Asunto(s)
Envejecimiento/fisiología , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Listeriosis/microbiología , Animales , Femenino , Listeria monocytogenes , Ratones , Ratones Endogámicos C57BL , Factores de Riesgo
15.
Ecotoxicology ; 30(8): 1572-1585, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33459951

RESUMEN

In-depth studies of the microbiome and mobile resistome profile of different environments is central to understanding the role of the environment in antimicrobial resistance (AMR), which is one of the urgent threats to global public health. In this study, we demonstrated the use of a rapid (and easily portable) sequencing approach coupled with user-friendly bioinformatics tools, the MinION (Oxford Nanopore Technologies), on the evaluation of the microbial as well as mobile metal and antibiotic resistome profile of semi-rural wastewater. A total of 20 unique phyla, 43 classes, 227 genera, and 469 species were identified in samples collected from the Amherst Wastewater Treatment Plant, both from primary and secondary treated wastewater. Alpha diversity indices indicated that primary samples were significantly richer and more microbially diverse than secondary samples. A total of 1041 ARGs, 68 MRGs, and 17 MGEs were detected in this study. There were more classes of AMR genes in primary than secondary wastewater, but in both cases multidrug, beta-lactam and peptide AMR predominated. Of note, OXA ß-lactamases, some of which are also carbapenemases, were enriched in secondary samples. Metal resistance genes against arsenic, copper, zinc and molybdenum were the dominant MRGs in the majority of the samples. A larger proportion of resistome genes were located in chromosome-derived sequences except for mobilome genes, which were predominantly located in plasmid-derived sequences. Genetic elements related to transposase were the most common MGEs in all samples. Mobile or MGE/plasmid-associated resistome genes that confer resistance to last resort antimicrobials such as carbapenems and colistin were detected in most samples. Worryingly, several of these potentially transferable genes were found to be carried by clinically-relevant hosts including pathogenic bacterial species in the orders Aeromonadales, Clostridiales, Enterobacterales and Pseudomonadales. This study demonstrated that the MinION can be used as a metagenomics approach to evaluate the microbiome, resistome, and mobilome profile of primary and secondary wastewater.


Asunto(s)
Metales Pesados , Nanoporos , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Metagenómica , Prevalencia , Aguas Residuales
16.
J Clin Microbiol ; 59(2)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33177119

RESUMEN

Multilocus sequence typing (MLST) is a low-resolution but rapid genotyping method for Clostridioides difficile Whole-genome sequencing (WGS) has emerged as the new gold standard for C. difficile typing, but cost and lack of standardization still limit broad utilization. In this study, we evaluated the potential to combine the portability of MLST with the increased resolution of WGS for a cost-saving approach to routine C. difficile typing. C. difficile strains from two New York City hospitals (hospital A and hospital B) were selected. WGS single-nucleotide polymorphism (wgSNP) was performed using established methods. Sequence types (ST) were determined using PubMLST, while wgSNP analysis was performed using the Bionumerics software. An additional analysis of a subset of data (hospital A) was made comparing the Bionumerics software to the CosmosID pipeline. Cost and turnaround time to results were compared for the algorithmic approach of MLST followed by wgSNP versus direct wgSNP. Among the 202 C. difficile isolates typed, 91% (n = 185/203) clustered within the representative ST, showing a high agreement between MLST and wgSNP. While clustering was similar between the Bionumerics and CosmosID pipelines, large differences in the overall number of SNPs were noted. A two-step algorithm for routine typing results in significantly lower cost than routine use of WGS. Our results suggest that using MLST as a first step in routine typing of C. difficile followed by WGS for MLST concordant strains is a less technically demanding, cost-saving approach for performing C. difficile typing than WGS alone without loss of discriminatory power.


Asunto(s)
Clostridioides difficile , Clostridioides , Algoritmos , Clostridioides difficile/genética , Humanos , Tipificación de Secuencias Multilocus , Ciudad de Nueva York
17.
Microorganisms ; 8(12)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322131

RESUMEN

Excessive use of antimicrobials in aquaculture is concerning, given possible environmental ramifications and the potential contribution to the spread of antimicrobial resistance (AR). In this study, we explored seasonal abundance of antimicrobial resistance genes and bacterial community composition in the water column of an intensive aquaculture pond stocked with Silver Carp (Hypophthalmichthys molitrix) prophylactically treated with sulfamethoprim (25% sulfadiazine; 5% trimethoprim), relative to an adjacent unstocked reservoir. Bacterial community composition was monitored using high-throughput sequencing of 16S rRNA gene amplicons in eight sampling profiles to determine seasonal dynamics, representing principal stages in the fish fattening cycle. In tandem, qPCR was applied to assess relative abundance of selected antimicrobial resistance genes (sul1, sul2, dfrA1, tetA and blaTEM) and class-1 integrons (int1). Concomitantly, resistomes were extrapolated from shotgun metagenomes in representative profiles. Analyses revealed increased relative abundance of sulfonamide and tetracycline resistance genes in fishpond-03, relative to pre-stocking and reservoir levels, whereas no significant differences were observed for genes encoding resistance to antimicrobials that were not used in the fishpond-03. Seasons strongly dictated bacterial community composition, with high abundance of cyanobacteria in summer and increased relative abundance of Flavobacterium in the winter. Our results indicate that prophylactic use of sulfonamides in intensive aquaculture ponds facilitates resistance suggesting that prophylactic use of these antimicrobials in aquaculture should be restricted.

18.
Front Microbiol ; 11: 602, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32362880

RESUMEN

The rapid detection of foodborne microbial pathogens contaminating fresh fruits and vegetables during the intervening period between harvest and consumption could revolutionize microbial quality assurance of food usually consumed raw and those with a limited shelf life. We have developed a sensitive, shotgun whole genome sequencing protocol capable of detecting as few as 1 colony forming unit (cfu) of Salmonella enterica serovar Typhimurium spiked on 25 g of lettuce. The Ion Torrent sequencing platform was used to generate reads of globally amplified DNA from microbes recovered from the surface of lettuce followed by bioinformatic analyses of the nucleotide sequences to detect the presence of Salmonella. The test is rapid and sensitive, and appropriate for testing perishable foods, and those consumed raw, for Salmonella contamination. The test has the potential to be universally applicable to any microbial contaminant on lettuce as long as a suitable bioinformatics pipeline is available and validated. A universal test is expected to pave the way for preventive and precision food safety and the re-shaping of the entire spectrum of food safety investigations from the current disease-limiting, reactive procedure to a proactive, disease prevention process.

19.
PLoS One ; 15(4): e0231210, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32271799

RESUMEN

The microbiological content of drinking water traditionally is determined by employing culture-dependent methods that are unable to detect all microorganisms, especially those that are not culturable. High-throughput sequencing now makes it possible to determine the microbiome of drinking water. Thus, the natural microbiota of water and water distribution systems can now be determined more accurately and analyzed in significantly greater detail, providing comprehensive understanding of the microbial community of drinking water applicable to public health. In this study, shotgun metagenomic analysis was performed to determine the microbiological content of drinking water and to provide a preliminary assessment of tap, drinking fountain, sparkling natural mineral, and non-mineral bottled water. Predominant bacterial species detected were members of the phyla Actinobacteria and Proteobacteria, notably the genera Alishewanella, Salmonella, and Propionibacterium in non-carbonated non-mineral bottled water, Methyloversatilis and Methylibium in sparkling natural mineral water, and Mycobacterium and Afipia in tap and drinking fountain water. Fecal indicator bacteria, i.e., Escherichia coli or enterococci, were not detected in any samples examined in this study. Bacteriophages and DNA encoding a few virulence-associated factors were detected but determined to be present only at low abundance. Antibiotic resistance markers were detected only at abundance values below our threshold of confidence. DNA of opportunistic plant and animal pathogens was identified in some samples and these included bacteria (Mycobacterium spp.), protozoa (Acanthamoeba mauritaniensis and Acanthamoeba palestinensis), and fungi (Melampsora pinitorqua and Chryosporium queenslandicum). Archaeal DNA (Candidatus Nitrosoarchaeum) was detected only in sparkling natural mineral water. This preliminary study reports the complete microbiome (bacteria, viruses, fungi, and protists) of selected types of drinking water employing whole-genome high-throughput sequencing and bioinformatics. Investigation into activity and function of the organisms detected is in progress.


Asunto(s)
Agua Potable/microbiología , Agua Potable/parasitología , Metagenómica , Bacterias/genética , Bacterias/patogenicidad , Recuento de Colonia Microbiana , ADN/genética , Genes Bacterianos , Microbiota/genética , Análisis de Componente Principal , Virulencia/genética
20.
Open Forum Infect Dis ; 7(2): ofaa018, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32047833

RESUMEN

BACKGROUND: Genes conferring carbapenem resistance have disseminated worldwide among Gram-negative bacteria. Here we present longitudinal changes in clinically obtained Escherichia coli isolates from 1 immunocompromised pediatric patient. This report demonstrates potential for antibiotic resistance genes and plasmids to emerge over time in clinical isolates from patients receiving intensive anticancer chemotherapy and broad-spectrum antibiotics. METHODS: Thirty-three isolates obtained over 7 months from 1 patient were included. Clinical data were abstracted from the medical record. For each isolate, studies included phenotypic antibacterial resistance patterns, sequence typing, bacterial isolate sequencing, plasmid identification, and antibiotic resistance gene identification. RESULTS: Sites of isolation included blood, wound culture, and culture for surveillance purposes from the perianal area. Isolates were of 5 sequence types (STs). All were resistant to multiple classes of antibiotics; 23 (69.6%) were phenotypically resistant to all carbapenems. The blaNDM-5 gene was identified in 22 (67%) isolates, all of ST-167 and ST-940, and appeared to coincide with the presence of the IncFII and IncX3 plasmid. CONCLUSIONS: We present unique microbiologic data from 33 multidrug-resistant E. coli isolates obtained over the course of 7 months from an individual patient in the United States. Two E. coli sequence types causing invasive infection in the same patient and harboring the blaNDM-5 gene, encoded on the IncX3 plasmid and the IncFII plasmid, were identified. This study highlights the emergence of multidrug-resistant bacteria on antibiotic therapy and the necessity of adequate neutrophil number and function in the clearance of bacteremia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...