Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parkinsons Dis ; 2023: 5033835, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701070

RESUMEN

The study aimed to investigate the neural changes that differentiate Parkinson's disease patients with freezing of gait and age-matched controls, using ambulatory electroencephalography event-related features. Compared to controls, definite freezers exhibited significantly less alpha desynchronization at the motor cortex about 300 ms before and after the start of overground walking and decreased low-beta desynchronization about 300 ms before and about 300 and 700 ms after walking onset. The late slope of motor potentials also differed in the sensory and motor areas between groups of controls, definite, and probable freezers. This difference was found both in preparation and during the execution of normal walking. The average frontal peak of motor potential was also found to be largely reduced in the definite freezers compared with the probable freezers and controls. These findings provide valuable insights into the underlying structures that are affected in patients with freezing of gait, which could be used to tailor drug development and personalize drug care for disease subtypes. In addition, the study's findings can help in the evaluation and validation of nonpharmacological therapies for patients with Parkinson's disease.

3.
Front Neurol ; 11: 571086, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240199

RESUMEN

Freezing of gait (FoG) is a disabling symptom characterized as a brief inability to step or by short steps, which occurs when initiating gait or while turning, affecting over half the population with advanced Parkinson's disease (PD). Several non-competing hypotheses have been proposed to explain the pathophysiology and mechanism behind FoG. Yet, due to the complexity of FoG and the lack of a complete understanding of its mechanism, no clear consensus has been reached on the best treatment options. Moreover, most studies that aim to explore neural biomarkers of FoG have been limited to semi-static or imagined paradigms. One of the biggest unmet needs in the field is the identification of reliable biomarkers that can be construed from real walking scenarios to guide better treatments and validate medical and therapeutic interventions. Advances in neural electrophysiology exploration, including EEG and DBS, will allow for pathophysiology research on more real-to-life scenarios for better FoG biomarker identification and validation. The major aim of this review is to highlight the most up-to-date studies that explain the mechanisms underlying FoG through electrophysiology explorations. The latest methodological approaches used in the neurophysiological study of FoG are summarized, and potential future research directions are discussed.

4.
Sensors (Basel) ; 20(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906737

RESUMEN

Functional Near-Infrared Spectroscopy (fNIRS) is a hemodynamic modality in human cognitive workload assessment receiving popularity due to its easier implementation, non-invasiveness, low cost and other benefits from the signal-processing point of view. Wearable wireless fNIRS systems used in research have promisingly shown that fNIRS could be used in cognitive workload assessment in out-of-the-lab scenarios, such as in operators' cognitive workload monitoring. In such a scenario, the wearability of the system is a significant factor affecting user comfort. In this respect, the wearability of the system can be improved if it is possible to minimize an fNIRS system without much compromise of the cognitive workload detection accuracy. In this study, cognitive workload-related hemodynamic changes were acquired using an fNIRS system covering the whole forehead, which is the region of interest in most cognitive workload-monitoring studies. A machine learning approach was applied to explore how the mean accuracy of the cognitive workload classification accuracy varied across various sensing locations on the forehead such as the Left, Mid, Right, Left-Mid, Right-Mid and Whole forehead. The statistical significance analysis result showed that the Mid location could result in significant cognitive workload classification accuracy compared to Whole forehead sensing, with a statistically insignificant difference in the mean accuracy. Thus, the wearable fNIRS system can be improved in terms of wearability by optimizing the sensor location, considering the sensing of the Mid location on the forehead for cognitive workload monitoring.


Asunto(s)
Espectroscopía Infrarroja Corta , Dispositivos Electrónicos Vestibles , Cognición , Humanos , Monitoreo Fisiológico , Procesamiento de Señales Asistido por Computador , Tecnología Inalámbrica , Carga de Trabajo
5.
IEEE Trans Neural Syst Rehabil Eng ; 28(7): 1623-1635, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32634099

RESUMEN

Prediction of human voluntary gait intention is a very significant task to ensure direct cortical control of real-life assistive technologies for locomotion rehabilitation. Neurophysiological studies provide that human voluntary gait intention is represented by slow DC potentials and power shifts in specific frequency ranges of brain wave, which can be detected 1.5- 2 seconds before the actual onset. The goal of this study was to determine whether it is possible to reliably detect the intention of voluntary gait 'starting' and 'stopping' intention before it takes place. A computational algorithm was designed to implement asynchronous prediction of gait intention in an offline and pseudo-online environment using support vector machine. Six healthy subjects participated in the study and performed self- paced voluntary gait cycles. A combination of advanced wavelet transform algorithms resulted in 88.23± 1.59% accuracy, 85.42± 4.03% sensitivity and 90.24± 2.78% specificity for intention of start detection and 87.04± 1.72% accuracy, 82.69± 4.13% sensitivity and 89.59± 3.04% specificity for intention to stop walking in offline testing. Additionally, the wavelet transform methods accompanied with threshold regulation and majority voting algorithm resulted in a True Positive Rate of 85.5± 5.0% and 81.2± 3.3% for 'start' and 'stop' prediction with 6.8± 0.7 and 9.4± 1.0 False Positives per Minute respectively in pseudo online testing. The average detection latencies were -1002 ± 603 ms and -943 ± 603 ms, respectively, for 'start' and 'stop' prediction. The study provides promising outcomes in terms of TPR, FP/min, and detection latency, which suggests that human voluntary gait intention can be predicted before the onset of movement.


Asunto(s)
Intención , Análisis de Ondículas , Algoritmos , Marcha , Humanos , Movimiento , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA