Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Prot ; 86(12): 100189, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37926290

RESUMEN

Eggs represent a significant vehicle for Salmonella Enteritidis with the pathogen being transferred to chicks in the hatchery, or to consumers via table eggs. In the following, the efficacy of a gas-phase hydroxyl-radical process for decontaminating hatchery and table eggs was evaluated. Recovery of Salmonella was maximized through holding eggs in tryptic soy broth containing 20% w/v glycerol for 1 h prior to plating. By using this technique, it was possible to recover 63% of the theoretical Salmonella inoculated onto eggs. The continuous hydroxyl-radical reactor consisted of a bank of UV-C lamps (254 nm) that generated hydroxyl-radicals from the degradation of hydrogen peroxide (H2O2) mist and ozone gas. The optimal treatment was defined as that which supports a 5 log CFU/egg reduction of Salmonella without negatively affecting egg quality or leaving H2O2 residues. A process of 2% v/v H2O2 delivered at 30 mL/min with a UV-C dose of 19 mJ/cm2 and ozone (20 ppm) with a total treatment time of 10s was selected. The egg quality metrics (Haugh value, yolk index, albumin pH, yolk pH) did not negatively differ over a 35-day shelf-life at 4 or 25℃ compared to washed eggs or nontreated controls. The cuticle layer of eggs remained intact following hydroxyl-radical treatment. Fertilized eggs (n = 61) treated with the hydroxyl-radicals exhibited the same hatchery rate (75%) as nontreated controls (71-79%) with no defects (unhealed navels or red hocks) being observed. The same hydroxyl-radical treatment could be applied to table eggs to support >5 log CFU/egg reduction of Salmonella and was compatible with egg washing regimes practiced in industry. In comparison, the egg washing process based on sodium hydroxide and chlorine supported a 2.76 ± 0.38 log CFU/egg reduction of Salmonella. The hydroxyl-radical treatment represents a preventative control step to reduce the carriage of Salmonella on hatchery and table eggs.


Asunto(s)
Ozono , Salmonella enteritidis , Animales , Peróxido de Hidrógeno/farmacología , Microbiología de Alimentos , Recuento de Colonia Microbiana , Ozono/farmacología , Huevos , Pollos
2.
ACS Appl Bio Mater ; 6(3): 1019-1031, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36862384

RESUMEN

Although chemotherapy is regarded as an essential option in cancer treatment, it is still far from being perfect. Inadequate tumor drug concentration and systemic toxicity along with broad biodistribution have diminished the utility of chemotherapy. Tumor-targeting peptide-conjugated multifunctional nanoplatforms have emerged as an effective strategy for site-directed tumor tissues in cancer treatment and imaging. Herein, Pep42-targeted iron oxide magnetic nanoparticles (IONPs) functionalized with ß-cyclodextrin (ßCD) containing doxorubicin (DOX) (Fe3O4-ßCD-Pep42-DOX) were successfully developed. The physical effects of the prepared NPs were characterized by employing various techniques. Transmission electron microscopy (TEM) images disclosed that the developed Fe3O4-ßCD-Pep42-DOX nanoplatforms had a spherical morphology and a core-shell structure with a size of nearly 17 nm. Fourier transform infrared (FT-IR) spectroscopy showed that ß-cyclodextrin, DOX, and Pep42 molecules were successfully loaded on the IONPs. In vitro cytotoxicity analysis revealed that the fabricated multifunctional Fe3O4-ßCD-Pep42 nanoplatforms possessed excellent biosafety toward BT-474, MDA-MB468 (cancerous cells), and MCF10A normal cells, while Fe3O4-ßCD-Pep42-DOX exhibited great cancer cell killing ability. The high cellular uptake along with intracellular trafficking of Fe3O4-ßCD-Pep42-DOX highlights the usefulness of the Pep42-targeting peptide. In vivo results strongly supported the in vitro results, i.e., significant tumor size reduction was observed by single-dose injection of Fe3O4-ßCD-Pep42-DOX into tumor-bearing mice. Interestingly, in vivo MR imaging (MRI) of Fe3O4-ßCD-Pep42-DOX revealed T2 contrast improvement in the tumor cells and therapeutic ability in cancer theranostics. Taken together, these findings provided strong evidence for the potential capability of Fe3O4-ßCD-Pep42-DOX as a multifunctional nanoplatform in cancer therapy and imaging and opens up a new avenue of research in this area.


Asunto(s)
Péptidos de Penetración Celular , Nanopartículas de Magnetita , Neoplasias , Animales , Ratones , Chaperón BiP del Retículo Endoplásmico , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/química , Ligandos , Espectroscopía Infrarroja por Transformada de Fourier , Distribución Tisular , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias/tratamiento farmacológico
3.
Int J Food Microbiol ; 367: 109587, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35193098

RESUMEN

The following reports on the generation of hydroxyl-radical activated water prepared by passing a hydrogen peroxide solution containing Fe(III) catalyst through a UV-C reactor. The activated water was subsequently evaluated for antimicrobial activity against Escherichia coli O157:H7 in suspension or when inoculated onto mung beans. Hydroxyl-radical generation was assessed through the oxidation of methylene blue when reacted with activated water prepared from solutions of different pH (4-10), UV-C dose (32-128 mJ/cm2), hydrogen peroxide (0-1000 mg/L) and Fe(III) concentration (0-100 mg/L). Methylene blue oxidation was associated with high concentrations of each reactant with a positive correlation with Fe(III) concentration. Inactivation curves of E. coli O157:H7 in activated water were diphasic with an initial slow rate that increased after 15 min contact time. In contrast to the methylene blue assay, the antimicrobial action of activated water was associated with high hydrogen peroxide (500 mg/mL) and low Fe(III) catalyst (1 mg/L) with no significant interaction with UV-C dose. Evidence would suggest that the mode-of-inactivation was through a radical propagation reaction that is rate-limited by the reduction of Fe (III) to Fe (II). Here, the initial activation process via UV-C illumination results in photo-reduction of Fe(III) and propagates the formation of hydroxyl-radicals. Fe(III) to Fe(II) cycling continues with oxidation of cell structures that ultimately leads to loss of viability due to accumulation of cellular damage. When activated water was used to soak mung beans inoculated with E. coli O157:H7 a 1 log reduction was obtained with a 19% increase in germinated beans and 8.5% higher sprout yield relative to controls. The oxidation reduction potential decreased from 477 mV to 288 mV and pH increased from 3.97 to 5.47, over the 24 h mung bean soak period. The reduction of Salmonella and Listeria monocytogenes on mung beans soaked in activated water was <1 log CFU/g with all three pathogens growing back over the sprouting period. From the results it can be concluded that activated water can enhance the germination of mung beans along with sprout yield but has limited capacity when applied alone as a seed disinfection method.


Asunto(s)
Escherichia coli O157 , Listeria monocytogenes , Vigna , Recuento de Colonia Microbiana , Compuestos Férricos , Microbiología de Alimentos , Radical Hidroxilo , Salmonella , Agua
4.
Food Microbiol ; 103: 103937, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35082063

RESUMEN

A continuous Photo-Fenton Advanced-Oxidation-Process (AOP) for reducing the chlorine-demand of spent lettuce wash water was developed based on the generation of hydroxyl-radicals from the UV-C degradation of hydrogen peroxide in the presence of ferric-catalyst. It was found that an interaction between UV-C and hydrogen peroxide or ferric-catalyst concentration was associated with high hydroxyl-radical generation as determined from the oxidation of methylene blue. The optimal AOP treatment was identified as 320 mJ/cm2 UV-C dose, 9.6 mg/L H2O2, and 9 mg/L ferric-catalyst. When the treatment was applied to simulated lettuce spent wash water (6.6 g romaine lettuce per liter of distilled water containing 100 mg bentonite; pH 6.9) the chlorine demand was reduced from 150 ppm to 130 ppm. The chlorination of AOP treated water did not result in a greater log reduction of pathogens (Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella) on lettuce but did reduce cross-contamination between batches during washing. The chlorinated byproducts formed in AOP treated water exhibited higher antimicrobial activity compared to untreated controls. Although the treatment was successful in reducing cross-contamination of lettuce batches the cytotoxicity of disinfection byproducts requires to be assessed.


Asunto(s)
Desinfectantes , Lactuca , Cloro/análisis , Cloro/farmacología , Recuento de Colonia Microbiana , Desinfectantes/farmacología , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Manipulación de Alimentos , Microbiología de Alimentos , Agua
5.
J Food Prot ; 84(11): 1945-1955, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34189580

RESUMEN

ABSTRACT: Processes based on generating vapor-phase hydroxyl radicals or chlorine radicals were developed for inactivating Listeria monocytogenes on mushrooms without negatively affecting quality. Antimicrobial radicals were generated from the UV-C degradation of hydrogen peroxide or hypochlorite and ozone gas. Response surface modeling was used to identify the interaction among the operating parameters for the hydroxyl radical process: UV-C254nm intensity, hydrogen peroxide concentration, and ozone delivered. There was an inverse relationship between hydrogen peroxide concentration and UV-C intensity in terms of the log reduction of L. monocytogenes. The independent parameters for the chlorine radical process were hypochlorite concentration, pH, and UV-C intensity. From predictive models, the optimal hydroxyl radical treatment was found to be 5% (v/v) H2O2, 2.86 mW/cm2 UV-C intensity (total UV-C dose 144 mJ/cm2), and 16.5 mg of ozone. The optimal parameters for the chlorine radical process were 10 ppm of hypochlorite (pH 3.0), 11.0 mg of ozone, and 4.60 mW/cm2 UV-C intensity. When inoculated mushrooms were treated with the optimal hydroxyl radical and chlorine radical processes, the reduction of L. monocytogenes was found to be 2.42 ± 0.42 and 2.61 ± 0.30 log CFU, respectively, without any negative effects on mushroom quality (weight loss and Browning index during 14 days of storage at 4°C). These reductions were significantly greater than those from application of the individual elements of the radical processes and those in the control process, which used a 90-s dip in 1% (v/v) hydrogen peroxide. The study has demonstrated that hydroxyl radical and chlorine radical vapor-phase treatments are equally effective at inactivating L. monocytogenes on mushrooms and can be considered as a preventative control step.


Asunto(s)
Agaricus , Listeria monocytogenes , Ozono , Cloro/farmacología , Microbiología de Alimentos , Peróxido de Hidrógeno/farmacología , Radical Hidroxilo
6.
PLoS One ; 16(3): e0248487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33735216

RESUMEN

A gas-phase Advanced Oxidation Process (gAOP) was evaluated for decontaminating N95 and surgical masks. The continuous process was based on the generation of hydroxyl-radicals via the UV-C (254 nm) photo-degradation of hydrogen peroxide and ozone. The decontamination efficacy of the gAOP was dependent on the orientation of the N95 mask passing through the gAOP unit with those positioned horizontally enabling greater exposure to hydroxyl-radicals compared to when arranged vertically. The lethality of gAOP was independent of the applied hydrogen peroxide concentration (2-6% v/v) but was significantly (P<0.05) higher when H2O2 was introduced into the unit at 40 ml/min compared to 20 ml/min. A suitable treatment for N95 masks was identified as 3% v/v hydrogen peroxide delivered into the gAOP reactor at 40 ml/min with continuous introduction of ozone gas and a UV-C dose of 113 mJ/cm2 (30 s processing time). The treatment supported >6 log CFU decrease in Geobacillus stearothermophilus endospores, > 8 log reduction of human coronavirus 229E, and no detection of Escherichia coli K12 on the interior and exterior of masks. There was no negative effect on the N95 mask fitting or particulate efficacy after 20 passes through the gAOP system. No visual changes or hydrogen peroxide residues were detected (<1 ppm) in gAOP treated masks. The optimized gAOP treatment could also support >6 log CFU reduction of endospores inoculated on the interior or exterior of surgical masks. G. stearothermophilus Apex spore strips could be applied as a biological indicator to verify the performance of gAOP treatment. Also, a chemical indicator based on the oxidative polymerization of pyrrole was found suitable for reporting the generation of hydroxyl-radicals. In conclusion, gAOP is a verifiable treatment that can be applied to decontaminate N95 and surgical masks without any negative effects on functionality.


Asunto(s)
Descontaminación/métodos , Máscaras/virología , Gases/química , Humanos , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Respiradores N95/virología , Oxidación-Reducción , Ozono/química , Fotólisis
7.
J Food Sci ; 85(9): 2645-2655, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32839995

RESUMEN

A method based on vapor-phase advanced oxidation process (AOP) for decontaminating red or green grapes was validated for inactivating Listeria monocytogenes and spoilage molds. A Central Composite Design (CCD) and Response Surface Methodology (RSM) were applied to determine the contribution of UV-C (254 nm) dose, hydrogen peroxide, and ozone concentration on the lethality toward Aspergillus niger spores (biodensiometer) and changes to the grape quality (firmness and color over 14-day post-treatment storage at 4 °C). A high UV-C dose (>129 mJ/cm2 ) or >4.0 % v/v hydrogen peroxide induced-blistering and darkening of grapes at the end of the storage period. Yet, an optimized AOP treatment (with regards to preserving grape quality) was derived to be 1.3% v/v hydrogen peroxide (5 mL/10 berries) with 9-mg ozone gas and a UV-C dose of 123 mJ/cm2 (10 s at UV-C intensity of 12 mW/cm2 ). A predictive model was constructed and verified based on the log reduction of A. niger spores and changes in quality characteristics of red grapes. The optimal AOP treatment supported a 1.6-log CFU/g reduction of Aspergillus spores and decreased L. monocytogenes counts by 3.92 ± 0.17 and 4.77 ± 0.30 log CFU/g on green and red grapes, respectively, that were not significantly different to the surrogate, Lactobacillus fructivorans. There was no significant difference in the reduction of L. monocytogenes with grapes arranged in a single or double layer. Botrytis cinerea counts were reduced by 1.08 to 1.35 log CFU/g using the optimized AOP treatment with no change in grape color or firmness during storage. A sensory panel could not differentiate AOP-treated grapes from nontreated controls although 3 of 15 panelists did note subtle flavor notes. PRACTICAL APPLICATION: Postharvest washing of fresh produce has limited efficacy in removing foodborne pathogens and spoilage microbes. This is especially relevant to berries, such as grapes, that are susceptible to spoilage following washing. The vapor-phase AOP treatment provides a supplemental or alternative approach for produce decontamination. However, the operating parameters need to be optimized to ensure that decontamination of grapes is not at the expense of quality. In the current study, this was achieved by ensuring a balance between hydrogen peroxide, ozone, and UV-C dose that form the elements of an AOP treatment.


Asunto(s)
Botrytis/crecimiento & desarrollo , Conservación de Alimentos/métodos , Frutas/microbiología , Lactobacillus/crecimiento & desarrollo , Listeria monocytogenes/crecimiento & desarrollo , Vitis/microbiología , Aspergillus niger/efectos de los fármacos , Aspergillus niger/crecimiento & desarrollo , Botrytis/efectos de los fármacos , Recuento de Colonia Microbiana , Microbiología de Alimentos , Conservación de Alimentos/instrumentación , Frutas/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/farmacología , Lactobacillus/efectos de los fármacos , Listeria monocytogenes/efectos de los fármacos , Oxidación-Reducción , Ozono/química , Ozono/farmacología , Vitis/química
8.
Int J Food Microbiol ; 333: 108789, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-32688136

RESUMEN

Two decontamination methods were evaluated for inactivating a cocktail of Salmonella or Listeria monocytogenes inoculated onto model low moisture foods (LMFs; dried strawberry, dried apple, raisins, chocolate crumb, cornflakes, shell-on or deshelled pistachio nuts). One treatment was based on a peracetic acid-ethanol (PAA-ethanol) sanitizer combination with the other being an Advanced Oxidation Process (AOP) that simultaneously applied UV-C (254 nm), ozone and hydrogen peroxide. The low moisture food was spray inoculated then dried prior to treatment. With Salmonella it was found that a pre-incubation step in 1% w/v glycerol-tryptic soy broth for 1 h prior to plating, significantly increased recovery of the pathogen compared to TSB alone. However, no increased recovery of L. monocytogenes was observed using the TSB-glycerol pre-incubation step. No Salmonella was detected on cornflakes, chocolate crumb and strawberry using 1.25 parts per thousand (‰) PAA-ethanol. The inactivation of Salmonella on deshelled pistachio was significantly higher using 2.5‰ PAA-ethanol sanitizer compared to the AOP treatments tested. Only negligible reductions of Salmonella (<1 log cfu) were obtained with shell-on pistachio treated with PAA-ethanol sanitizer or AOP. Salmonella could be reduced on dried apple slices by >4 log CFU when 5.0‰ PAA-ethanol was applied. L. monocytogenes was more sensitive to PAA-ethanol compared to Salmonella and could be eliminated on all the LMFs apart from shell-on pistachio. An AOP treatment applied 10% v/v hydrogen peroxide, ozone and 54 mJ/cm2 UV-C could significantly reduce Salmonella on dried apple slices compared to when the individual elements (hydrogen peroxide, ozone or UV-C) were applied. Salmonella was also eliminated by AOP on the other LMFs (apart from shell-on pistachio) although the same level of inactivation was achieved by spraying with 10% v/v hydrogen peroxide alone. L. monocytogenes was sensitive to hydrogen peroxide and AOP being eliminated from all the LMFs. Although this may suggest that hydrogen peroxide spray was equivalent to AOP treatment it was noted that no residual H2O2 or changes in visual appearance was evident on samples treated with the latter process. The study has demonstrated that the two decontamination methods assessed can be applied to reduce Salmonella and L. monocytogenes on LMFs although efficacy is dependent on the pathogen and product type.


Asunto(s)
Chocolate/microbiología , Desinfectantes/farmacología , Etanol/farmacología , Frutas/microbiología , Listeria monocytogenes/efectos de los fármacos , Nueces/microbiología , Ácido Peracético/farmacología , Salmonella/efectos de los fármacos , Antibacterianos/farmacología , Cacao/microbiología , Recuento de Colonia Microbiana , Descontaminación/métodos , Microbiología de Alimentos , Inocuidad de los Alimentos , Peróxido de Hidrógeno/farmacología , Oxidación-Reducción , Pistacia/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...