Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 18(10): 1096-105, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23032875

RESUMEN

Cognitive impairments are common in depression and involve dysfunctional serotonin neurotransmission. The 5-HT1B receptor (5-HT(1B)R) regulates serotonin transmission, via presynaptic receptors, but can also affect transmitter release at heterosynaptic sites. This study aimed at investigating the roles of the 5-HT(1B)R, and its adapter protein p11, in emotional memory and object recognition memory processes by the use of p11 knockout (p11KO) mice, a genetic model for aspects of depression-related states. 5-HT(1B)R agonist treatment induced an impairing effect on emotional memory in wild type (WT) mice. In comparison, p11KO mice displayed reduced long-term emotional memory performance. Unexpectedly, 5-HT(1B)R agonist stimulation enhanced memory in p11KO mice, and this atypical switch was reversed after hippocampal adeno-associated virus mediated gene transfer of p11. Notably, 5-HT(1B)R stimulation increased glutamatergic neurotransmission in the hippocampus in p11KO mice, but not in WT mice, as measured by both pre- and postsynaptic criteria. Magnetic resonance spectroscopy demonstrated global hippocampal reductions of inhibitory GABA, which may contribute to the memory enhancement and potentiation of pre- and post-synaptic measures of glutamate transmission by a 5-HT(1B)R agonist in p11KO mice. It is concluded that the level of hippocampal p11 determines the directionality of 5-HT(1B)R action on emotional memory processing and modulates hippocampal functionality. These results emphasize the importance of using relevant disease models when evaluating the role of serotonin neurotransmission in cognitive deficits related to psychiatric disorders.


Asunto(s)
Anexina A2/fisiología , Reacción de Prevención/fisiología , Emociones/fisiología , Hipocampo/fisiología , Memoria/fisiología , Receptor de Serotonina 5-HT1B/fisiología , Proteínas S100/fisiología , Animales , Anexina A2/deficiencia , Anexina A2/genética , Reacción de Prevención/efectos de los fármacos , Depresión/fisiopatología , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Femenino , Genes Reporteros , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Resonancia Magnética Nuclear Biomolecular , Fosforilación/efectos de los fármacos , Terminales Presinápticos/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Piridinas/farmacología , Tiempo de Reacción , Receptores AMPA/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas S100/deficiencia , Proteínas S100/genética , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Transducción Genética
2.
Neurochem Int ; 59(4): 473-81, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21397652

RESUMEN

Glutamate dehydrogenase 1 (GLUD1) is a mitochondrial enzyme expressed in all tissues, including brain. Although this enzyme is expressed in glutamatergic pathways, its function as a regulator of glutamate neurotransmitter levels is still not well defined. In order to gain an understanding of the role of GLUD1 in the control of glutamate levels and synaptic release in mammalian brain, we generated transgenic (Tg) mice that over-express this enzyme in neurons of the central nervous system. The Tg mice have increased activity of GLUD, as well as elevated levels and increased synaptic and depolarization-induced release of glutamate. These mice suffer age-associated losses of dendritic spines, nerve terminals, and neurons. The neuronal losses and dendrite structural changes occur in select regions of the brain. At the transcriptional level in the hippocampus, cells respond by increasing the expression of genes related to neurite growth and synapse formation, indications of adaptive or compensatory responses to the effects of increases in the release and action of glutamate at synapses. Because these Tg mice live to a relatively old age they are a good model of the effects of a "hyperglutamatergic" state on the aging process in the nervous system. The mice are also useful in defining the molecular pathways affected by the over-activation of GLUD in glutamatergic neurons of the brain and spinal cord.


Asunto(s)
Adaptación Fisiológica , Modelos Animales de Enfermedad , Glutamato Deshidrogenasa/biosíntesis , Ácido Glutámico/biosíntesis , Ácido Glutámico/metabolismo , Ratones Transgénicos , Neuronas/enzimología , Transmisión Sináptica/fisiología , Adaptación Fisiológica/genética , Animales , Encéfalo/enzimología , Polaridad Celular/genética , Polaridad Celular/fisiología , Dendritas/enzimología , Dendritas/patología , Genoma Humano/genética , Genoma Humano/fisiología , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/fisiología , Ácido Glutámico/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología , Médula Espinal/enzimología , Transmisión Sináptica/genética , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología
3.
J Pharmacol Exp Ther ; 324(2): 725-31, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18024788

RESUMEN

l-Glutamate (Glu) is the main excitatory neurotransmitter in the mammalian central nervous system, and it is involved in most aspects of normal brain function, including cognition, memory and learning, plasticity, and motor movement. Although microdialysis techniques have been used to study Glu, the slow temporal resolution of the technique may be inadequate to properly examine tonic and phasic Glu. Thus, our laboratory has developed an enzyme-based microelectrode array (MEA) with fast response time and low detection limits for Glu. We have modified the MEA design to allow for reliable measures in the brain of awake, freely moving mice. In this study, we chronically implanted the MEA in prefrontal cortex (PFC) or striatum (Str) of awake, freely moving C57BL/6 mice. We successfully measured Glu levels 7 days postimplantation without loss of MEA sensitivity. In addition, we determined resting (tonic) Glu levels to be 3.3 microM in the PFC and 5.0 microM in the Str. Resting Glu levels were subjected to pharmacological manipulation with tetrodotoxin (TTX) and dl-threo-beta-hydroxyaspartate (THA). TTX significantly (p < 0.05) decreased resting Glu by 20%, whereas THA significantly (p < 0.05) increased resting Glu by 60%. Taken together, our data show that chronic recordings of tonic and phasic clearance of exogenously applied Glu can be carried out in awake mice for at least 7 days in vivo, allowing for longer term studies of Glu regulation.


Asunto(s)
Cuerpo Estriado/metabolismo , Ácido Glutámico/análisis , Ácido Glutámico/metabolismo , Corteza Prefrontal/metabolismo , Vigilia/fisiología , Animales , Cuerpo Estriado/química , Masculino , Ratones , Ratones Endogámicos C57BL , Microdiálisis/métodos , Corteza Prefrontal/química , Proyectos de Investigación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...