Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788710

RESUMEN

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.

2.
Cell Rep ; 42(10): 113166, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768823

RESUMEN

Anti-NMDA receptor autoantibodies (NMDAR-Abs) in patients with NMDAR encephalitis cause severe disease symptoms resembling psychosis and cause cognitive dysfunction. After passive transfer of patients' cerebrospinal fluid or human monoclonal anti-GluN1-autoantibodies in mice, we find a disrupted excitatory-inhibitory balance resulting from CA1 neuronal hypoexcitability, reduced AMPA receptor (AMPAR) signaling, and faster synaptic inhibition in acute hippocampal slices. Functional alterations are also reflected in widespread remodeling of the hippocampal proteome, including changes in glutamatergic and GABAergic neurotransmission. NMDAR-Abs amplify network γ oscillations and disrupt θ-γ coupling. A data-informed network model reveals that lower AMPAR strength and faster GABAA receptor current kinetics chiefly account for these abnormal oscillations. As predicted in silico and evidenced ex vivo, positive allosteric modulation of AMPARs alleviates aberrant γ activity, reinforcing the causative effects of the excitatory-inhibitory imbalance. Collectively, NMDAR-Ab-induced aberrant synaptic, cellular, and network dynamics provide conceptual insights into NMDAR-Ab-mediated pathomechanisms and reveal promising therapeutic targets that merit future in vivo validation.


Asunto(s)
Hipocampo , Transmisión Sináptica , Humanos , Ratones , Animales , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Neuronas/metabolismo , Autoanticuerpos , Receptores AMPA/metabolismo
3.
Sci Adv ; 9(21): eabq7806, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235660

RESUMEN

Sepsis-associated encephalopathy (SAE) is a severe and frequent complication of sepsis causing delirium, coma, and long-term cognitive dysfunction. We identified microglia and C1q complement activation in hippocampal autopsy tissue of patients with sepsis and increased C1q-mediated synaptic pruning in a murine polymicrobial sepsis model. Unbiased transcriptomics of hippocampal tissue and isolated microglia derived from septic mice revealed an involvement of the innate immune system, complement activation, and up-regulation of lysosomal pathways during SAE in parallel to neuronal and synaptic damage. Microglial engulfment of C1q-tagged synapses could be prevented by stereotactic intrahippocampal injection of a specific C1q-blocking antibody. Pharmacologically targeting microglia by PLX5622, a CSF1-R inhibitor, reduced C1q levels and the number of C1q-tagged synapses, protected from neuronal damage and synapse loss, and improved neurocognitive outcome. Thus, we identified complement-dependent synaptic pruning by microglia as a crucial pathomechanism for the development of neuronal defects during SAE.


Asunto(s)
Encefalopatía Asociada a la Sepsis , Sepsis , Ratones , Animales , Microglía/metabolismo , Complemento C1q/metabolismo , Encefalopatía Asociada a la Sepsis/etiología , Encefalopatía Asociada a la Sepsis/metabolismo , Sinapsis/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo
4.
Nat Commun ; 12(1): 4067, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34210973

RESUMEN

Ataxia Telangiectasia and Rad3-related (ATR) protein, as a key DNA damage response (DDR) regulator, plays an essential function in response to replication stress and controls cell viability. Hypomorphic mutations of ATR cause the human ATR-Seckel syndrome, characterized by microcephaly and intellectual disability, which however suggests a yet unknown role for ATR in non-dividing cells. Here we show that ATR deletion in postmitotic neurons does not compromise brain development and formation; rather it enhances intrinsic neuronal activity resulting in aberrant firing and an increased epileptiform activity, which increases the susceptibility of ataxia and epilepsy in mice. ATR deleted neurons exhibit hyper-excitability, associated with changes in action potential conformation and presynaptic vesicle accumulation, independent of DDR signaling. Mechanistically, ATR interacts with synaptotagmin 2 (SYT2) and, without ATR, SYT2 is highly upregulated and aberrantly translocated to excitatory neurons in the hippocampus, thereby conferring a hyper-excitability. This study identifies a physiological function of ATR, beyond its DDR role, in regulating neuronal activity.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neuronas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular , Enanismo , Fármacos actuantes sobre Aminoácidos Excitadores , Facies , Hipocampo , Ratones , Microcefalia , Mutación , Células de Purkinje , Transducción de Señal , Sinaptotagmina II/metabolismo
5.
Expert Opin Ther Targets ; 25(1): 37-47, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33233983

RESUMEN

INTRODUCTION: Antibody-mediated encephalitides (AE) with pathogenic autoantibodies (aAB) against neuronal surface antigens are a growing group of diseases characterized by antineuronal autoimmunity in the brain. AE patients typically present with rapidly progressive encephalitis and characteristic disease symptoms dependent on the target antigen. Current treatment consists of an escalating immunotherapy strategy including plasma exchange, steroid application, and B cell depletion. AREAS COVERED: For this review, we searched Medline database and google scholar with inclusive dates from 2000. We summarize current treatment strategies and present novel therapeutic approaches of target-specific interventions at the pre-clinical level as well as immunotherapy directed at antibody-induced pathology. Treatment options include modulation of target proteins, intervention with downstream pathways, antibody modification, and depletion of antibody-secreting cells. EXPERT OPINION: Although current therapies in AE are effective in many patients, recovery is often prolonged and relapses as well as persistent deficits can occur. Specific immunotherapy together with supportive target-specific therapy may provide faster control of severe symptoms, shorten the disease course, and lead to long-lasting disease stability. Among the various novel therapeutic approaches, modulation of targeted receptors by small molecules crossing the blood-brain barrier as well as prevention of aAB binding is of particular interest.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/terapia , Encefalitis/terapia , Inmunoterapia/métodos , Animales , Autoanticuerpos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Encefalitis/inmunología , Humanos , Terapia Molecular Dirigida , Intercambio Plasmático/métodos , Índice de Severidad de la Enfermedad , Esteroides/administración & dosificación
6.
J Neurosci ; 39(9): 1755-1766, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30617211

RESUMEN

Stroke robustly stimulates adult neurogenesis in the hippocampal dentate gyrus. It is currently unknown whether this process induces beneficial or maladaptive effects, but morphological and behavioral studies have reported aberrant neurogenesis and impaired hippocampal-dependent memory following stroke. However, the intrinsic function and network incorporation of adult-born granule cells (ABGCs) after ischemia is unclear. Using patch-clamp electrophysiology, we evaluated doublecortin-positive (DCX+) ABGCs as well as DCX- dentate gyrus granule cells 2 weeks after a stroke or sham operation in DCX/DsRed transgenic mice of either sex. The developmental status, intrinsic excitability, and synaptic excitability of ABGCs were accelerated following stroke, while dendritic morphology was not aberrant. Regression analysis revealed uncoupled development of intrinsic and network excitability, resulting in young, intrinsically hyperexcitable ABGCs receiving disproportionately large glutamatergic inputs. This aberrant functional maturation in the subgroup of ABGCs in the hippocampus may contribute to defective hippocampal function and increased seizure susceptibility following stroke.SIGNIFICANCE STATEMENT Stroke increases hippocampal neurogenesis but the functional consequences of the postlesional response is mostly unclear. Our findings provide novel evidence of aberrant functional maturation of newly generated neurons following stroke. We demonstrate that stroke not only causes an accelerated maturation of the intrinsic and synaptic parameters of doublecortin-positive, new granule cells in the hippocampus, but that this accelerated development does not follow physiological dynamics due to uncoupled intrinsic and synaptic maturation. Hyperexcitable immature neurons may contribute to disrupted network integration following stroke.


Asunto(s)
Giro Dentado/fisiopatología , Infarto de la Arteria Cerebral Media/fisiopatología , Neurogénesis , Potenciales Sinápticos , Animales , Giro Dentado/patología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo
7.
Brain ; 141(11): 3144-3159, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30346486

RESUMEN

Leucine-rich glioma-inactivated 1 (LGI1) is a secreted neuronal protein that forms a trans-synaptic complex that includes the presynaptic disintegrin and metalloproteinase domain-containing protein 23 (ADAM23), which interacts with voltage-gated potassium channels Kv1.1, and the postsynaptic ADAM22, which interacts with AMPA receptors. Human autoantibodies against LGI1 associate with a form of autoimmune limbic encephalitis characterized by severe but treatable memory impairment and frequent faciobrachial dystonic seizures. Although there is evidence that this disease is immune-mediated, the underlying LGI1 antibody-mediated mechanisms are unknown. Here, we used patient-derived immunoglobulin G (IgG) antibodies to determine the main epitope regions of LGI1 and whether the antibodies disrupt the interaction of LGI1 with ADAM23 and ADAM22. In addition, we assessed the effects of patient-derived antibodies on Kv1.1, AMPA receptors, and memory in a mouse model based on cerebroventricular transfer of patient-derived IgG. We found that IgG from all patients (n = 25), but not from healthy participants (n = 20), prevented the binding of LGI1 to ADAM23 and ADAM22. Using full-length LGI1, LGI3, and LGI1 constructs containing the LRR1 domain (EPTP1-deleted) or EPTP1 domain (LRR3-EPTP1), IgG from all patients reacted with epitope regions contained in the LRR1 and EPTP1 domains. Confocal analysis of hippocampal slices of mice infused with pooled IgG from eight patients, but not pooled IgG from controls, showed a decrease of total and synaptic levels of Kv1.1 and AMPA receptors. The effects on Kv1.1 preceded those involving the AMPA receptors. In acute slice preparations of hippocampus, patch-clamp analysis from dentate gyrus granule cells and CA1 pyramidal neurons showed neuronal hyperexcitability with increased glutamatergic transmission, higher presynaptic release probability, and reduced synaptic failure rate upon minimal stimulation, all likely caused by the decreased expression of Kv1.1. Analysis of synaptic plasticity by recording field potentials in the CA1 region of the hippocampus showed a severe impairment of long-term potentiation. This defect in synaptic plasticity was independent from Kv1 blockade and was possibly mediated by ineffective recruitment of postsynaptic AMPA receptors. In parallel with these findings, mice infused with patient-derived IgG showed severe memory deficits in the novel object recognition test that progressively improved after stopping the infusion of patient-derived IgG. Different from genetic models of LGI1 deficiency, we did not observe aberrant dendritic sprouting or defective synaptic pruning as potential cause of the symptoms. Overall, these findings demonstrate that patient-derived IgG disrupt presynaptic and postsynaptic LGI1 signalling, causing neuronal hyperexcitability, decreased plasticity, and reversible memory deficits.


Asunto(s)
Inmunoglobulina G/farmacología , Canal de Potasio Kv.1.1/metabolismo , Memoria/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Proteínas/inmunología , Receptores AMPA/metabolismo , Proteínas ADAM/metabolismo , Animales , Enfermedades Autoinmunes/inmunología , Encéfalo/citología , Encéfalo/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Canal de Potasio Kv.1.1/ultraestructura , Encefalitis Límbica/inmunología , Masculino , Memoria/efectos de los fármacos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Unión Proteica/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos , Proteínas/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Sinapsis/ultraestructura
8.
Neuron ; 100(1): 91-105.e9, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30146304

RESUMEN

AMPA receptors are essential for fast excitatory transmission in the CNS. Autoantibodies to AMPA receptors have been identified in humans with autoimmune encephalitis and severe defects of hippocampal function. Here, combining electrophysiology and high-resolution imaging with neuronal culture preparations and passive-transfer models in wild-type and GluA1-knockout mice, we analyze how specific human autoantibodies against the AMPA receptor subunit GluA2 affect receptor function and composition, synaptic transmission, and plasticity. Anti-GluA2 antibodies induce receptor internalization and a reduction of synaptic GluA2-containing AMPARs followed by compensatory ryanodine receptor-dependent incorporation of synaptic non-GluA2 AMPARs. Furthermore, application of human pathogenic anti-GluA2 antibodies to mice impairs long-term synaptic plasticity in vitro and affects learning and memory in vivo. Our results identify a specific immune-neuronal rearrangement of AMPA receptor subunits, providing a framework to explain disease symptoms.


Asunto(s)
Autoanticuerpos/farmacología , Encefalitis/fisiopatología , Enfermedad de Hashimoto/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , Receptores AMPA/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Encefalitis/complicaciones , Encefalitis/inmunología , Enfermedad de Hashimoto/complicaciones , Enfermedad de Hashimoto/inmunología , Hipocampo/efectos de los fármacos , Humanos , Trastornos de la Memoria/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Receptores AMPA/inmunología
9.
Ann Neurol ; 80(3): 388-400, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27399303

RESUMEN

OBJECTIVE: To demonstrate that ephrin-B2 (the ligand of EphB2 receptor) antagonizes the pathogenic effects of patients' N-methyl-D-aspartate receptor (NMDAR) antibodies on memory and synaptic plasticity. METHODS: One hundred twenty-two C57BL/6J mice infused with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, with or without ephrin-B2, were investigated. CSF was infused through ventricular catheters connected to subcutaneous osmotic pumps over 14 days. Memory, behavioral tasks, locomotor activity, presence of human antibodies specifically bound to hippocampal NMDAR, and antibody effects on the density of cell-surface and synaptic NMDAR and EphB2 were examined at different time points using reported techniques. Short- and long-term synaptic plasticity were determined in acute brain sections; the Schaffer collateral pathway was stimulated and the field excitatory postsynaptic potentials were recorded in the CA1 region of the hippocampus. RESULTS: Mice infused with patients' CSF, but not control CSF, developed progressive memory deficit and depressive-like behavior along with deposits of NMDAR antibodies in the hippocampus. These findings were associated with a decrease of the density of cell-surface and synaptic NMDAR and EphB2, and marked impairment of long-term synaptic plasticity without altering short-term plasticity. Administration of ephrin-B2 prevented the pathogenic effects of the antibodies in all the investigated paradigms assessing memory, depressive-like behavior, density of cell-surface and synaptic NMDAR and EphB2, and long-term synaptic plasticity. INTERPRETATION: Administration of ephrin-B2 prevents the pathogenic effects of anti-NMDAR encephalitis antibodies on memory and behavior, levels of cell-surface NMDAR, and synaptic plasticity. These findings reveal a strategy beyond immunotherapy to antagonize patients' antibody effects. Ann Neurol 2016;80:388-400.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/tratamiento farmacológico , Anticuerpos/efectos de los fármacos , Región CA1 Hipocampal/efectos de los fármacos , Depresión/prevención & control , Efrina-B2/farmacología , Trastornos de la Memoria/prevención & control , Plasticidad Neuronal/efectos de los fármacos , Animales , Encefalitis Antirreceptor N-Metil-D-Aspartato/líquido cefalorraquídeo , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Anticuerpos/inmunología , Conducta Animal , Región CA1 Hipocampal/inmunología , Depresión/etiología , Depresión/inmunología , Modelos Animales de Enfermedad , Humanos , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/inmunología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/inmunología , Receptor EphB2
10.
Brain ; 139(Pt 2): 365-79, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26582558

RESUMEN

Stiff-person syndrome is the prototype of a central nervous system disorder with autoantibodies targeting presynaptic antigens. Patients with paraneoplastic stiff-person syndrome may harbour autoantibodies to the BAR (Bin/Amphiphysin/Rvs) domain protein amphiphysin, which target its SH3 domain. These patients have neurophysiological signs of compromised central inhibition and respond to symptomatic treatment with medication enhancing GABAergic transmission. High frequency neurotransmission as observed in tonic GABAergic interneurons relies on fast exocytosis of neurotransmitters based on compensatory endocytosis. As amphiphysin is involved in clathrin-mediated endocytosis, patient autoantibodies are supposed to interfere with this function, leading to disinhibition by reduction of GABAergic neurotransmission. We here investigated the effects of human anti-amphiphysin autoantibodies on structural components of presynaptic boutons ex vivo and in vitro using electron microscopy and super-resolution direct stochastic optical reconstruction microscopy. Ultrastructural analysis of spinal cord presynaptic boutons was performed after in vivo intrathecal passive transfer of affinity-purified human anti-amphiphysin autoantibodies in rats and revealed signs of markedly disabled clathrin-mediated endocytosis. This was unmasked at high synaptic activity and characterized by a reduction of the presynaptic vesicle pool, clathrin coated intermediates, and endosome-like structures. Super-resolution microscopy of inhibitory GABAergic presynaptic boutons in primary neurons revealed that specific human anti-amphiphysin immunoglobulin G induced an increase of the essential vesicular protein synaptobrevin 2 and a reduction of synaptobrevin 7. This constellation suggests depletion of resting pool vesicles and trapping of releasable pool vesicular proteins at the plasma membrane. Similar effects were found in amphiphysin-deficient neurons from knockout mice. Application of specific patient antibodies did not show additional effects. Blocking alternative pathways of clathrin-independent endocytosis with brefeldin A reversed the autoantibody induced effects on molecular vesicle composition. Endophilin as an interaction partner of amphiphysin showed reduced clustering within presynaptic terminals. Collectively, these results point towards an autoantibody-induced structural disorganization in GABAergic synapses with profound changes in presynaptic vesicle pools, activation of alternative endocytic pathways, and potentially compensatory rearrangement of proteins involved in clathrin-mediated endocytosis. Our findings provide novel insights into synaptic pathomechanisms in a prototypic antibody-mediated central nervous system disease, which may serve as a proof-of-principle example in this evolving group of autoimmune disorders associated with autoantibodies to synaptic antigens.


Asunto(s)
Autoanticuerpos/administración & dosificación , Proteínas del Tejido Nervioso/administración & dosificación , Terminales Presinápticos/ultraestructura , Vesículas Sinápticas/ultraestructura , Animales , Autoanticuerpos/sangre , Células Cultivadas , Femenino , Humanos , Inyecciones Espinales , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/sangre , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Embarazo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Ratas , Ratas Endogámicas Lew , Síndrome de la Persona Rígida/sangre , Síndrome de la Persona Rígida/diagnóstico , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo
11.
Front Neurol ; 6: 136, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26124746

RESUMEN

Autoantibodies (aAB) to the presynaptic located enzyme glutamate decarboxylase 65 (GAD65) are a characteristic attribute for a variety of autoimmune diseases of the central nervous system including subtypes of limbic encephalitis, stiff person-syndrome, cerebellar ataxia, and Batten's disease. Clinical signs of hyperexcitability and improvement of disease symptoms upon immunotherapy in some of these disorders suggest a possible pathogenic role of associated aAB. Recent experimental studies report inconsistent results regarding a direct pathogenic influence of anti-GAD65 aAB affecting inhibitory synaptic transmission in central GABAergic pathways. We here provide a method for direct evaluation of aAB-induced pathomechanisms in the intact hippocampal network. Purified patient IgG fractions containing aAB to GAD65 together with fixable lipophilic styryl dyes (FMdyes) are stereotactically injected into the hilus and the dentate gyrus in anesthetized mice. Twenty-four hours after intrahippocampal injection, acute hippocampal slices are prepared and transferred to a patch-clamp recording setup equipped with a fluorescence light source. Intraneural incorporated FMdyes show correct injection site for patch-clamp recording. Whole-cell patch-clamp recordings are performed from granule cells in the dentate gyrus and extracellular stimulation is applied in the border area of the dentate gyrus-hilus region to stimulate GABAergic afferents arising from parvalbumin positive basket cells. GABA-A receptor mediated inhibitory postsynaptic currents (IPSC) and miniature IPSC are recorded after blocking glutamatergic transmission. This approach allows investigation of potential aAB-induced effects on GABA-A receptor signaling ex vivo in an intact neuronal network. This offers several advantages compared to experimental procedures used in previous studies by in vitro AB preincubation of primary neurons or slice preparations. Furthermore, this method requires only small amounts of patient material that are often limited in rare diseases.

12.
J Neural Transm (Vienna) ; 122(3): 357-62, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24990310

RESUMEN

The majority of patients with stiff person-syndrome (SPS) are characterized by autoantibodies to glutamate decarboxylase 65 (GAD65). In previous passive-transfer studies, SPS immunoglobulin G (IgG) induced SPS core symptoms. We here provide evidence that SPS-IgG causes a higher frequency of spontaneous vesicle fusions. Sustained GABAergic transmission and presynaptic GABAergic vesicle pool size remained unchanged. Since these findings cannot be attributed to anti-GAD65 autoantibodies alone, we propose that additional autoantibodies with so far undefined antigen specificity might affect presynaptic release mechanisms.


Asunto(s)
Neuronas GABAérgicas/citología , Glutamato Descarboxilasa/inmunología , Inmunoglobulina G/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Síndrome de la Persona Rígida/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Embrión de Mamíferos , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Hipocampo/citología , Humanos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Estadísticas no Paramétricas , Síndrome de la Persona Rígida/inmunología , Sinaptofisina/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...