Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 8(8): 4185-4195, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32884699

RESUMEN

The encapsulation of fatty acids in nanocarrier systems is a very effective technique in improving their biological efficiency and controlled delivery. Nanostructured lipid carrier (NLC) is a major type of lipid-based nanoparticle. This study is focused on producing nanolipid carrier containing conjugated linoleic acid and fortifying low-fat milk using this nanoparticle. Nanostructured lipid carriers were produced by hot high-shear homogenization containing 1.5% Poloxamer 407, cocoa butter as solid lipid, and conjugated linoleic acid as liquid oil in ratio of 10:1. Results showed that the nanoparticles sized 81 nm with monomodular dispersity and the system was stable at 4 and 22°C for 40 days. Zeta potential and encapsulation efficiency (%EE) were -15.8 mV and 98.2%, respectively. Scanning electron microscopy (SEM) showed that the particles are in spiral form and small size and no significant aggregation was observed because of few changes in the system turbidity after storage time. The result of oxidative stability showed that using Nanostructured lipid carriers system resulted in lower malone dialdehyde production. Conjugated linoleic acid was protected at level of 3.9% of milk fatty acids in Nanostructured lipid carrier formulation during storage time. Based on these findings, Nanostructured lipid carriers system is an appropriate and stable nanocarrier system for delivery of nutraceuticals in foods and can be used in protecting them against oxidation, heating, and other processes in order to fortify foods and beverages.

2.
ACS Appl Mater Interfaces ; 8(48): 33264-33272, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27934166

RESUMEN

Area selective atomic layer deposition has the potential to significantly improve current fabrication approaches by introducing a bottom-up process in which robust and conformal thin films are selectively deposited onto patterned substrates. In this paper, we demonstrate selective deposition of dielectrics on metal/dielectric patterns by protecting metal surfaces using alkanethiol blocking layers. We examine alkanethiol self-assembled monolayers (SAMs) with two different chain lengths deposited both in vapor and in solution and show that in both systems, thiols have the ability to block surfaces against dielectric deposition. We show that thiol molecules can displace Cu oxide, opening possibilities for easier sample preparation. A vapor-deposited alkanethiol SAM is shown to be more effective than a solution-deposited SAM in blocking ALD, even after only 30 s of exposure. The vapor deposition also results in a much better thiol regeneration process and may facilitate deposition of the SAMs on porous or three-dimensional structures, allowing for the fabrication of next generation electronic devices.

3.
ACS Nano ; 10(4): 4451-8, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-26950397

RESUMEN

Area-selective atomic layer deposition (AS-ALD) is attracting increasing interest because of its ability to enable both continued dimensional scaling and accurate pattern placement for next-generation nanoelectronics. Here we report a strategy for depositing material onto three-dimensional (3D) nanostructures with topographic selectivity using an ALD process with the aid of an ultrathin hydrophobic surface layer. Using ion implantation of fluorocarbons (CFx), a hydrophobic interfacial layer is formed, which in turn causes significant retardation of nucleation during ALD. We demonstrate the process for Pt ALD on both blanket and 2D patterned substrates. We extend the process to 3D structures, demonstrating that this method can achieve selective anisotropic deposition, selectively inhibiting Pt deposition on deactivated horizontal regions while ensuring that only vertical surfaces are decorated during ALD. The efficacy of the approach for metal oxide ALD also shows promise, though further optimization of the implantation conditions is required. The present work advances practical applications that require area-selective coating of surfaces in a variety of 3D nanostructures according to their topographical orientation.

4.
ACS Nano ; 9(9): 8710-7, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26181140

RESUMEN

Nanoscale patterning of materials is widely used in a variety of device applications. Area selective atomic layer deposition (ALD) has shown promise for deposition of patterned structures with subnanometer thickness control. However, the current process is limited in its ability to achieve good selectivity for thicker films formed at higher number of ALD cycles. In this report, we demonstrate a strategy for achieving selective film deposition via a self-correcting process on patterned Cu/SiO2 substrates. We employ the intrinsically selective adsorption of octadecylphosphonic acid self-assembled monolayers on Cu over SiO2 surfaces to selectively create a resist layer only on Cu. ALD is then performed on the patterns to deposit a dielectric film. A mild etchant is subsequently used to selectively remove any residual dielectric film deposited on the Cu surface while leaving the dielectric film on SiO2 unaffected. The selectivity achieved after this treatment, measured by compositional analysis, is found to be 10 times greater than for conventional area selective ALD.

5.
ACS Appl Mater Interfaces ; 6(20): 17831-6, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25290370

RESUMEN

Area selective molecular layer deposition (MLD) is a promising technique for achieving micro- or nanoscale patterned organic structures. However, this technique still faces challenges in attaining high selectivity, especially at large MLD cycle numbers. Here, we illustrate a new strategy for achieving high quality patterns in selective film deposition on patterned Cu/Si substrates. We employed the intrinsically selective adsorption of an octadecylphosphonic acid self-assembled monolayer (SAM) on Cu over Si surfaces to selectively create a resist layer only on Cu. MLD was then performed on the patterns to deposit organic films predominantly on the Si surface, with only small amounts growing on the Cu regions. A negative potential bias was subsequently applied to the pattern to selectively desorb the layer of SAMs electrochemically from the Cu surface while preserving the MLD films on Si. Selectivity could be enhanced up to 30-fold after this treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA