Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant J ; 91(2): 306-324, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28380278

RESUMEN

Over-reduction of the photosynthetic electron transport (PET) chain should be avoided, because the accumulation of reducing electron carriers produces reactive oxygen species (ROS) within photosystem I (PSI) in thylakoid membranes and causes oxidative damage to chloroplasts. To prevent production of ROS in thylakoid membranes the H+ gradient (ΔpH) needs to be built up across the thylakoid membranes to suppress the over-reduction state of the PET chain. In this study, we aimed to identify the critical component that stimulates ΔpH formation under illumination in higher plants. To do this, we screened ethyl methane sulfonate (EMS)-treated Arabidopsis thaliana, in which the formation of ΔpH is impaired and the PET chain caused over-reduction under illumination. Subsequently, we isolated an allelic mutant that carries a missense mutation in the γ-subunit of chloroplastic CF0 CF1 -ATP synthase, named hope2. We found that hope2 suppressed the formation of ΔpH during photosynthesis because of the high H+ efflux activity from the lumenal to stromal side of the thylakoid membranes via CF0 CF1 -ATP synthase. Furthermore, PSI was in a more reduced state in hope2 than in wild-type (WT) plants, and hope2 was more vulnerable to PSI photoinhibition than WT under illumination. These results suggested that chloroplastic CF0 CF1 -ATP synthase adjusts the redox state of the PET chain, especially for PSI, by modulating H+ efflux activity across the thylakoid membranes. Our findings suggest the importance of the buildup of ΔpH depending on CF0 CF1 -ATP synthase to adjust the redox state of the reaction center chlorophyll P700 in PSI and to suppress the production of ROS in PSI during photosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ATPasas de Translocación de Protón de Cloroplastos/genética , Transporte de Electrón , Luz , Mutación , Fotosíntesis , Fuerza Protón-Motriz , Tilacoides/metabolismo
2.
Photosynth Res ; 129(3): 279-90, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27116126

RESUMEN

To elucidate the molecular mechanism to oxidize the reaction center chlorophyll, P700, in PSI, we researched the effects of partial pressure of O2 (pO2) on photosynthetic characteristic parameters in sunflower (Helianthus annuus L.) leaves. Under low CO2 conditions, the oxidation of P700 was stimulated; however the decrease in pO2 suppressed its oxidation. Electron fluxes in PSII [Y(II)] and PSI [Y(I)] showed pO2-dependence at low CO2 conditions. H(+)-consumption rate, estimated from Y(II) and CO2-fixation/photorespiration rates (JgH(+)), showed the positive curvature relationship with the dissipation rate of electrochromic shift signal (V H (+) ), which indicates H(+)-efflux rate from lumen to stroma in chloroplasts. Therefore, these electron fluxes contained, besides CO2-fixation/photorespiration-dependent electron fluxes, non-H(+)-consumption electron fluxes including Mehler-ascorbate peroxidase (MAP)-pathway. Y(I) that was larger than Y(II) surely implies the functioning of cyclic electron flow (CEF). Both MAP-pathway and CEF were suppressed at lower pO2, with plastoquinone-pool reduced. That is, photorespiration prepares the redox-poise of photosynthetic electron transport system for CEF activity as an electron sink. Excess Y(II), [ΔY(II)] giving the curvature relationship with V H (+) , and excess Y(I) [ΔCEF] giving the difference between Y(I) and Y(II) were used as an indicator of MAP-pathway and CEF activity, respectively. Although ΔY(II) was negligible and did not show positive relationship to the oxidation-state of P700, ΔCEF showed positive linear relationship to the oxidation-state of P700. These facts indicate that CEF cooperatively with photorespiration regulates the redox-state of P700 to suppress the over-reduction in PSI under environmental stress conditions.


Asunto(s)
Helianthus/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Transporte de Electrón , Electrones , Helianthus/efectos de la radiación , Luz , Oxidación-Reducción , Oxígeno/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plastoquinona/metabolismo , Estrés Fisiológico
3.
Plant Physiol ; 171(3): 1626-34, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26936894

RESUMEN

Photosystem I (PSI) photoinhibition suppresses plant photosynthesis and growth. However, the mechanism underlying PSI photoinhibition has not been fully clarified. In this study, in order to investigate the mechanism of PSI photoinhibition in higher plants, we applied repetitive short-pulse (rSP) illumination, which causes PSI-specific photoinhibition in chloroplasts isolated from spinach leaves. We found that rSP treatment caused PSI photoinhibition, but not PSII photoinhibition in isolated chloroplasts in the presence of O2 However, chloroplastic superoxide dismutase and ascorbate peroxidase activities failed to protect PSI from its photoinhibition. Importantly, PSI photoinhibition was largely alleviated in the presence of methyl viologen, which stimulates the production of reactive oxygen species (ROS) at the stromal region by accepting electrons from PSI, even under the conditions where CuZn-superoxide dismutase and ascorbate peroxidase activities were inactivated by KCN. These results suggest that the ROS production site, but not the ROS production rate, is critical for PSI photoinhibition. Furthermore, we found that not only superoxide (O2 (-)) but also singlet oxygen ((1)O2) is involved in PSI photoinhibition induced by rSP treatment. From these results, we suggest that PSI photoinhibition is caused by both O2 (-) and (1)O2 produced within the thylakoid membranes when electron carriers in PSI become highly reduced. Here, we show, to our knowledge, new insight into the PSI photoinhibition in higher plants.


Asunto(s)
Complejo de Proteína del Fotosistema I/metabolismo , Oxígeno Singlete/metabolismo , Spinacia oleracea/fisiología , Superóxidos/metabolismo , Tilacoides/metabolismo , Ascorbato Peroxidasas/metabolismo , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Ionóforos/farmacología , Nigericina/farmacología , Oxígeno/farmacología , Paraquat/farmacología , Complejo de Proteína del Fotosistema I/fisiología , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Spinacia oleracea/efectos de los fármacos , Superóxido Dismutasa/metabolismo
4.
Plant Cell Physiol ; 57(7): 1443-1453, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26707729

RESUMEN

Accumulation of electrons under conditions of environmental stress produces a reduced state in the photosynthetic electron transport (PET) system and causes the reduction of O2 by PSI in the thylakoid membranes to produce the reactive oxygen species superoxide radical, which irreversibly inactivates PSI. This study aims to elucidate the molecular mechanism for the oxidation of reaction center Chl of PSI, P700, after saturated pulse (SP) light illumination of the cyanobacterium Synechococcus elongatus PCC 7942 under steady-state photosynthetic conditions. Both P700 and NADPH were transiently oxidized after SP light illumination under CO2-depleted photosynthesis conditions. In contrast, the Chl fluorescence intensity transiently increased. Compared with the wild type, the increase in Chl fluorescence and the oxidations of P700 and NADPH were greatly enhanced in a mutant (Δflv1/3) deficient in the genes encoding FLAVODIIRON 1 (FLV1) and FLV3 proteins even under high photosynthetic conditions. Furthermore, oxidation of Cyt f was also observed in the mutant. After SP light illumination, a transient suppression of O2 evolution was also observed in Δflv1/3. From these observations, we propose that the reduction in the plastquinone (PQ) pool suppresses linear electron flow at the Cyt b6/f complex, which we call the reduction-induced suppression of electron flow (RISE) in the PET system. The accumulation of the reduced form of PQ probably suppresses turnover of the Q cycle in the Cyt b6/f complex.


Asunto(s)
Fotosíntesis , Synechococcus/fisiología , Dióxido de Carbono/farmacología , Clorofila/metabolismo , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/efectos de la radiación , Fluorescencia , Genes Bacterianos , Modelos Biológicos , Mutación/genética , NADP/metabolismo , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Oxígeno/metabolismo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Synechococcus/efectos de los fármacos , Synechococcus/genética , Synechococcus/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA