Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbes Infect ; 22(9): 441-450, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32442683

RESUMEN

Chlamydia trachomatis LGV (CtL2) causes systemic infection and proliferates in lymph nodes as well as genital tract or rectum producing a robust inflammatory response, presumably leading to a low oxygen environment. We therefore assessed how CtL2 growth in immortal human epithelial cells adapts to hypoxic conditions. Assessment of inclusion forming units, the quantity of chlamydial 16S rDNA, and inclusion size showed that hypoxia promotes CtL2 growth. Under hypoxia, HIF-1α was stabilized and p53 was degraded in infected cells. Moreover, AKT was strongly phosphorylated at S473 by CtL2 infection. This activation was significantly diminished by LY-294002, a PI3K-AKT inhibitor, which decreased the number of CtL2 progeny. HIF-1α stabilizers (CoCl2, desferrioxamine) had no effect on increasing CtL2 growth, indicating no autocrine impact of growth factors produced by HIF-1α stabilization. Furthermore, in normoxia, CtL2 infection changed the NAD+/NADH ratio of cells with increased gapdh expression; in contrast, under hypoxia, the NAD+/NADH ratio was the same in infected and uninfected cells with high and stable expression of gapdh, suggesting that CtL2-infected cells adapted better to hypoxia. Together, these data indicate that hypoxia promotes CtL2 growth in immortal human epithelial cells by activating the PI3K-AKT pathway and maintaining the NAD+/NADH ratio with stably activated glycolysis.


Asunto(s)
Chlamydia trachomatis/metabolismo , Células Epiteliales/metabolismo , Hipoxia/metabolismo , NAD/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Chlamydia trachomatis/genética , Chlamydia trachomatis/crecimiento & desarrollo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación
2.
Can J Microbiol ; 65(2): 135-143, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30336068

RESUMEN

The obligate intracellular bacterium Chlamydia trachomatis activates the host cell apoptosis pathway at a late stage of its developmental cycle. However, whether caspase-3, which is a key enzyme of apoptosis, is activated in Chlamydia-infected cells remains unknown. Here, we established HEp-2 cells stably expressing cFluc-DEVD, which is a caspase-3 substrate sequence inserted into cyclic firefly luciferase, and then monitored the dynamics of caspase-3 activity in cells infected with Chlamydia. Transfected cells without infection showed a significant increase in luciferase activity due to stimulation with staurosporine, an inducer of apoptosis. Activation was significantly blocked by addition of caspase inhibitor z-VAD-fmk. Furthermore, as expected, Chlamydia infection caused a significant increase in luciferase activation at 36-48 h postinfection with a contrastive decrease at 24 h postinfection, which is already well known. Such activation caused by the infection was much stronger when the amount of bacteria was increased. Thus, caspase-3 activation was accurately monitored by the luciferase activity in HEp-2 cells constitutively expressing the cFluc-DEVD probe. Furthermore, our data showed that C. trachomatis activates caspase-3 in host cells at a late stage of infection.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Chlamydia trachomatis/fisiología , Células Cultivadas , Activación Enzimática , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...