Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 413(5): 1279-1291, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33399880

RESUMEN

Renal complications are long-term effect of diabetes mellitus where glucose is excreted in urine. Therefore, reliable glucose detection in urine is critical. While commercial urine strips offer a simple way to detect urine sugar, poor sensitivity and low reliability limit their use. A hybrid glucose oxidase (GOx)/horseradish peroxidase (HRP) assay remains the gold standard for pathological detection of glucose. A key restriction is poor stability of HRP and its suicidal inactivation by hydrogen peroxide, a key intermediate of the GOx-driven reaction. An alternative is to replace HRP with a robust inorganic enzyme-mimic or NanoZyme. While colloidal NanoZymes show promise in glucose sensing, they detect low concentrations of glucose, while urine has high (mM) glucose concentration. In this study, a free-standing copper NanoZyme is used for the colorimetric detection of glucose in human urine. The sensor could operate in a biologically relevant dynamic linear range of 0.5-15 mM, while showing minimal sample matrix effect such that glucose could be detected in urine without significant sample processing or dilution. This ability could be attributed to the Cu NanoZyme that for the first time showed an ability to promote the oxidation of a TMB substrate to its double oxidation diimine product rather than the charge-transfer complex product commonly observed. Additionally, the sensor could operate at a single pH without the need to use different pH conditions as used during the gold standard assay. These outcomes outline the high robustness of the NanoZyme sensing system for direct detection of glucose in human urine. Graphical abstract.


Asunto(s)
Cobre/química , Glucosa/análisis , Glucosuria/orina , Nanopartículas del Metal/química , Materiales Biomiméticos/química , Catálisis , Coloides/química , Colorimetría/métodos , Humanos , Límite de Detección , Nanopartículas del Metal/ultraestructura , Oxidación-Reducción
2.
Anal Chim Acta ; 1083: 157-165, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31493806

RESUMEN

With growing environmental and health concerns over persistent organic compounds such as organophosphates, regulatory bodies have imposed strict regulations for their use and monitoring in water bodies. Although conventional analytical tools exist for the detection of organophosphorus pesticides, new strategies need to be developed to fulfil the ASSURED (affordable, sensitive, specific, user-friendly, rapid, equipment-free and deliverable to end users) criteria of the World Health Organisation. One such strategy is to employ the ability of certain nanoparticles to mimic the enzymatic activity of natural enzymes to develop optical sensors. We show that the intrinsic peroxidase-mimic NanoZyme activity of tyrosine-capped silver nanoparticles (Ag-NanoZyme) can be exploited for highly specific and rapid detection of chlorpyrifos, an organophosphorus pesticide. The underlying working principle of the proposed aptasensor is based on the dynamic non-covalent interaction of the chlorpyrifos specific aptamer (Chl) with the NanoZyme (sensor probe) vs. the pesticide target (analyte). The incorporation of the Chl aptamer ensures high specificity leading to a colorimetric response specifically in the presence of chlorpyrifos, while the sensor remains unresponsive to other pesticides from organophosphate and non-organophosphate groups. The robustness of the sensor to work directly in environmental samples was established by evaluating its ability to detect chlorpyrifos in river water samples. The excellent recovery rates demonstrate the sensor robustness, while the simplicity, and rapid sensor response (2 min) to detect the presence of chlorpyrifos highlights the capabilities of the proposed colorimetric sensing system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA