Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fungal Biol Biotechnol ; 11(1): 1, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172933

RESUMEN

BACKGROUND: Filamentous fungi are prolific producers of bioactive molecules and enzymes with important applications in industry. Yet, the vast majority of fungal species remain undiscovered or uncharacterized. Here we focus our attention to a wild fungal isolate that we identified as Anthostomella pinea. The fungus belongs to a complex polyphyletic genus in the family of Xylariaceae, which is known to comprise endophytic and pathogenic fungi that produce a plethora of interesting secondary metabolites. Despite that, Anthostomella is largely understudied and only two species have been fully sequenced and characterized at a genomic level. RESULTS: In this work, we used long-read sequencing to obtain the complete 53.7 Mb genome sequence including the full mitochondrial DNA. We performed extensive structural and functional annotation of coding sequences, including genes encoding enzymes with potential applications in biotechnology. Among others, we found that the genome of A. pinea encodes 91 biosynthetic gene clusters, more than 600 CAZymes, and 164 P450s. Furthermore, untargeted metabolomics and molecular networking analysis of the cultivation extracts revealed a rich secondary metabolism, and in particular an abundance of sesquiterpenoids and sesquiterpene lactones. We also identified the polyketide antibiotic xanthoepocin, to which we attribute the anti-Gram-positive effect of the extracts that we observed in antibacterial plate assays. CONCLUSIONS: Taken together, our results provide a first glimpse into the potential of Anthstomella pinea to provide new bioactive molecules and biocatalysts and will facilitate future research into these valuable metabolites.

2.
J Geophys Res Atmos ; 124(23): 12404-12425, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-32025451

RESUMEN

This study investigates the atmospheric drivers of severe precipitation deficits in the Greater Alpine Region during the last 210 years utilizing a daily atmospheric circulation type reconstruction. Precipitation deficit tends to be higher during periods with more frequent anticyclonic (dry) and less frequent cyclonic (wet) circulation types, as would be expected. However, circulation characteristics are not the main drivers of summer precipitation deficit. Dry soils in the warm season tend to limit precipitation, which is particularly the case for circulation types that are sensitive to a soil moisture-precipitation feedback. This mechanism is of specific relevance in explaining the major drought decades of the 1860s and 1940s. Both episodes show large negative precipitation anomalies in spring followed by increasing frequencies of circulation types sensitive to soil moisture precipitation feedbacks. The dry springs of the 1860s were likely caused by circulation characteristics that were quite different from those of recent decades as a consequence of the large spatial extent of Arctic sea ice at the end of the Little Ice Age. On the other hand, the dry springs of the 1940s developed under a persistent positive pressure anomaly across Western and Central Europe, triggered by positive sea surface temperatures in the western subtropical Atlantic.

3.
Biomed Tech (Berl) ; 58 Suppl 12013 08.
Artículo en Inglés | MEDLINE | ID: mdl-24042681
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA