Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Sci Rep ; 14(1): 11149, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750110

RESUMEN

The research aim is to clarify the effect of courtyard placement, the ratio between length and width, and courtyard orientation on energy consumption in residential buildings in hot and dry climates, to seek planning and designing alternatives for new cities and new residential complexes that are consistent with the environment and climate and save the consumption of energy used in the buildings. The research method was conducted through Design Builder software for simulation purposes. The reference model with the 157.25 m2 which accommodates a central square courtyard measuring 5 m × 5 m, on a residential building model in the New Valley Governorate of Kharga City, Egypt. The courtyard simulation is aimed to determine Less energy consumption inside the different case studies, in 9 courtyard placements The studied alternatives for Courtyard Placement, are (the center of the building, sub facades, and main facades). The different ratios are (1:1, 1.25:1, 1.5:1-1.75:1, 2:1, 2.25:1, 2.5-1). The longitudinal axis of the Courtyard has been oriented to the east-west direction for all placements, and north-south direction for all placements. Also, (orientation angle is Zero), it offered the percentages of better and worst cases in each position of the courtyard. The research findings suggest that the best Placement of the Courtyard that achieved the highest rate of saving of energy consumed inside the used building model was at the southwestern façade, with a saving rate of 18.73%. Then, the Placement of the Courtyard at the northwestern and southeastern facades with a saving rate of 17.91%, with a length-to-width ratio (2.5:1) if the longitudinal axis of the Courtyard is oriented in the north-south direction, Through the study, we conclude that the placement and orientation of the courtyard and its regular formation have contributed to rationalizing energy consumption in residential buildings, the study reached some important standards that could represent a methodological framework for designing contemporary residential buildings with an energy-efficient inner courtyard.

3.
Antibiotics (Basel) ; 13(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38534710

RESUMEN

In secondary healthcare, carbapenem-resistant Enterobacterales (CREs), such as those observed in Klebsiella pneumoniae, are a global public health priority with significant clinical outcomes. In this study, we described the clinical, phenotypic, and genotypic characteristics of three pan-drug-resistant (PDR) isolates that demonstrated extended resistance to conventional and novel antimicrobials. All patients had risk factors for the acquisition of multidrug-resistant organisms, while microbiological susceptibility testing showed resistance to all conventional antimicrobials. Advanced susceptibility testing demonstrated resistance to broad agents, such as ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam. Nevertheless, all isolates were susceptible to cefiderocol, suggested as one of the novel antimicrobials that demonstrated potent in vitro activity against resistant Gram-negative bacteria, including CREs, pointing toward its potential therapeutic role for PDR pathogens. Expanded genomic studies revealed multiple antimicrobial-resistant genes (ARGs), including blaNMD-5 and blaOXA derivative types, as well as a mutated outer membrane porin protein (OmpK37).

4.
Heliyon ; 10(1): e23027, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163192

RESUMEN

The risk of transmission of respiratory tract infections is considerably enhanced at mass gathering (MG) religious events. Hajj is an annual Islamic MG event with approximately 3 million Muslim pilgrims from over 180 countries concentrated in Makkah, Saudi Arabia. This study aimed to investigate the genetic diversity of influenza viruses circulating among pilgrims during the Hajj pilgrimage. We performed a cross-sectional analytical study where nasopharyngeal swabs (NPs) from pilgrims with respiratory tract illnesses presenting to healthcare facilities during the 2019 Hajj were screened for influenza viruses. Influenza A subtypes and influenza B lineages were determined by multiplex RT-PCR for positive influenza samples. The phylogenetic analysis was carried out for the hemagglutination (HA) gene. Out of 185 nasopharyngeal samples, 54 were positive for the human influenza virus. Of these, 27 were influenza A H1N1 and 19 H3N2, 4 were untypable influenza A, and 4 were influenza B. Phylogenetic analysis revealed that the H1N1 and H3N2 strains differentiated into different and independent genetic groups and formed close clusters with selected strains of influenza viruses from various locations. To conclude, this study demonstrates a high genetic diversity of circulating influenza A subtypes among pilgrims during the Hajj Season. There is a need for further larger studies to investigate in-depth the genetic characteristics of influenza viruses and other respiratory viruses during Hajj seasons.

5.
PLoS One ; 19(1): e0295365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38236827

RESUMEN

This paper presents a control method for a system composed of a photovoltaic (PV) array, five-phase impedance source inverter, five-phase induction motor and centrifugal pump. This method is based on controlling the motor speed to control the pump power as the insolation level or temperature change to attain the maximum power extraction from the PV-array. The motor speed is controlled by using artificial neural network (ANN) which is trained to provide the desired inverter frequency and modulation index at any insolation level and temperature to attain the maximum PV operating power. The data of the neural network are based on the operation of the induction motor at constant air gap flux and perturb and observe method for maximum power point tracking. Simulation results are obtained using MATLAB Simulink to verify the proposed control method.


Asunto(s)
Algoritmos , Suministros de Energía Eléctrica , Impedancia Eléctrica , Simulación por Computador , Redes Neurales de la Computación
6.
Sci Rep ; 14(1): 1873, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253571

RESUMEN

Nanofluids become significant in the mass and heat transfer models, especially in engineering problems. Current proceedings focused on the bioconvective Maxwell nanofluid flow passing through the permeable stretchable sheet contingent to nield boundary conditions involving effects of activation energy and thermal radiation. Various physical quantities are involved in this mechanism like magnetic field, thermophoresis, and Brownian motion. The main objective of the study is to report the heat and mass transport in the existence of motile microorganisms. In a mathematical perspective, this structured physical model is going to govern with the help of partial differential equations (PDEs). These governing PDEs are then converted into dimensionless ordinary differential equations form by utilizing appropriate similarity transformations. For numerical results, the shooting technique with 'bvp4c' built-in package of MATLAB was implemented. Computed results are then visualized graphically and discussed effects of involving physical variables on the nano-fluid flow profiles are comprehensively. From results, it has been concluded that the fluid flow velocity, temperature, concentration, and microorganism density profiles show escalation on increasing the numeric values of porosity, thermophoresis, buoyancy ratio, bioconvection Rayleigh, Peclet number parameters and decrement reported due to increasing the counts of Prandtl number, magnetic field, radiation, Brownian motion, Lewis number as evident from figures. The numerical outcomes observed by fixing the physical parameters as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]. Magnetic field and Brownian motion create retardation impact due to the liquid momentum. In tables, the numerical values of Skin friction, Nusselt number, Sherwood number, and microorganisms density number are presented and also comparison table of our computed results and already published results is included for the validation.

7.
Chem Rec ; 24(1): e202300235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37753795

RESUMEN

Since the initial MXenes were discovered in 2011, several MXene compositions constructed using combinations of various transition metals have been developed. MXenes are ideal candidates for different applications in energy conversion and storage, because of their unique and interesting characteristics, which included good electrical conductivity, hydrophilicity, and simplicity of large-scale synthesis. Herein, we study the current developments in two-dimensional (2D) MXene nanosheets for energy storage and conversion technologies. First, we discuss the introduction to energy storage and conversion devices. Later, we emphasized on 2D MXenes and some specific properties of MXenes. Subsequently, research advances in MXene-based electrode materials for energy storage such as supercapacitors and rechargeable batteries is summarized. We provide the relevant energy storage processes, common challenges, and potential approaches to an acceptable solution for 2D MXene-based energy storage. In addition, recent advances for MXenes used in energy conversion devices like solar cells, fuel cells and catalysis is also summarized. Finally, the future prospective of growing MXene-based energy conversion and storage are highlighted.

8.
Chemosphere ; 349: 140729, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37989439

RESUMEN

Respecting the basic need of clean and safe water on earth for every individual, it is necessary to take auspicious steps for waste-water treatment. Recently, metal-organic frameworks (MOFs) are considered as promising material because of their intrinsic features including the porosity and high surface area. Further, structural tunability of MOFs by following the principles of reticular chemistry, the MOFs can be functionalized for the high adsorption performance as well as adsorptive removal of target materials. However, there are still some major concerns associated with MOFs limiting their commercialization as promising adsorbents for waste-water treatment. The cost, toxicity and regenerability are the major issues to be addressed for MOFs to get insightful results. In this article, we have concise the current strategies to enhance the adsorption capacity of MOFs during the water-treatment for the removal of toxic dyes, pharmaceuticals, and heavy metals. Further, we have also discussed the role of metallic nodes, linkers and associated functional groups for effective removal of toxic water pollutants. In addition to conformist overview, we have critically analyzed the MOFs as adsorbents in terms of toxicity, cost and regenerability. These factors are utmost important to address before commercialization of MOFs as adsorbents for water-treatment. Finally, some future perspectives are discussed to give directions for potential research.


Asunto(s)
Estructuras Metalorgánicas , Metales Pesados , Contaminantes del Agua , Purificación del Agua , Estructuras Metalorgánicas/química , Metales Pesados/química , Colorantes , Purificación del Agua/métodos , Adsorción
9.
Heliyon ; 9(12): e22893, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125411

RESUMEN

Coated silver nanoparticles (Ag NPs) are currently receiving interest because of their numerous uses in various fields of electronics, antimicrobials, manufacturing sectors, optical science, and pharmaceuticals. Among others, it gained significant attention in the power electronic system. The goal of the proposed study is to use a cost-effective coating material for solar panels; to accomplish this, silver nanoparticles were synthesized from the leaves of the Rosy Periwinkle plants. Green synthesis and characterization, such as Ultraviolet Visible Spectrometer (UV-Vis) analysis, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), and Fourier Transform Infrared Spectroscopy (FTIR), were carried out after the silver nanoparticles have been collected prior coating. As a consequence, the effectiveness is determined based on the conductivity test, and the resulting Ag NPs are then applied to the c-si layer of the solar panel. Additionally, a modelling and experimental analysis are performed in this study to ascertain the suggested framework's ability to measure energy before and after coating panels with Ag NPs. Specifically, the Voltage Current (VI) and Power Voltage (PV) characteristics were validated in this study for analyzing the effectiveness and the obtained results revealed that the coating of green synthesized Ag NPs generated 2 % more power than the reference solar panel under the same conditions. Further, hardware testing and simulation were both used to confirm the outcomes and effectiveness of the suggested method. The open circuit voltage (Voc), short circuit current (Isc), maximum peak voltage (Vmp), maximum peak current (Imp), and efficiency are taken into account when assessing how well the suggested system performs at tracking. Moreover, the current density characteristics were evaluated with respect to various irradiation conditions for both the typical solar as well as Ag NPs coated panels. From the observation, it is noted that the efficiency level of coated panel was improved up to 19.20 %, 18 %, and 17.20 % for the irradiations of 200 W/m2, 500 W/m2, and 1000 W/m2 respectively.

10.
Heliyon ; 9(11): e21452, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027741

RESUMEN

The water-based Cu and CoFe2O4 hybrid nano liquid flow across a permeable curved sheet under the consequences of inertial and Lorentz forces has been reported in this analysis. The Joule heating and Darcy Forchheimer effects on fluid flow have been also examined. In the presence of copper (Cu) and cobalt iron oxide (CoFe2O4) nanoparticles, the hybrid nano liquid is synthesized. Radiation and heat source features are additionally incorporated to perform thermodynamics analysis in detail. The second law of thermodynamics is employed in order to estimate the overall generation of entropy. The nonlinear system of PDEs (partial differential equations) is transformed into a dimensionally-free set of ODEs (ordinary differential equations) by employing a similarity framework. The Mathematica built in package ND Solve method is applied to compute the resulting set of nonlinear differential equations numerically. Along with the velocity, and temperature profiles, skin friction and Nusselt number are also computed. Figures and tables illustrate the effects of flow factors on important profiles. Evidently, the outcomes reveal that hybrid nanofluid (Cu + CoFe2O4+H2O) is more progressive than nanofluid (Cu + H2O) and base fluid (H2O) in thermal phenomena. Furthermore, the velocity profile is improved with the greater values of curvature parameter, while the inverse trend is observed against the magnetic parameters. Also, the velocity and energy distribution of hybrid nano-liquid flow boosts with the inclusion of Cu and CoFe2O4 nanoparticles into the base fluid. Velocity distribution diminishes with the increment of volume friction. For high values of inertial factor, skin friction improve while velocity and Nusselt number declines.

11.
Heliyon ; 9(11): e21107, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37928015

RESUMEN

The magnetohydrodynamic (MHD) rotating flow that occurs across a stretching surface has numerous practical applications in a variety of domains. These fields include astronomy, engineering, the material sciences, and space exploration. The combined examination of magnetohydrodynamics rotating flow across a stretching surface, taking into consideration fluctuating viscosity and nanoparticle aggregation, has significant ramifications across several different domains. It is essential for both the growth of technology and the attainment of deeper insights into the complicated fluid dynamics to maintain research in this field. Given the aforementioned motivation, the principal aim of this study is to examine the effects of variable viscosity on the bidirectional rotating magnetohydrodynamic flow over a stretching surface. Aggregation effects on nanoparticles are used in the analysis. Titania (TiO2) is taken nanoparticle and ethylene glycol as base fluid. The nonlinear ordinary differential equations and the boundary conditions that correspond to them can be transformed into a dimensionless form by using a technique called similarity transformation. To get a numerical solution to the transformed equation, the Runge-Kutta 4th order (RK-4) method is utilized, and this is done in conjunction with the shooting method. The impact of various leading variables on dimensionless velocity, the coefficients of temperature, skin friction and local Nusselt number are graphically represented. Velocity profiles in both direction increases with increasing values of φ. The Nusselt number increases with increasing values of the radiation and temperature ratio parameters. When a 1 % volume fraction of nanoparticles is introduced, the Nusselt number exhibits a 0.174 % increase for the aggregation model compared to the regular fluid in the absence of radiation effects. When the aggregation model is used with a 1 % volume fraction of nanoparticles, the skin friction increases by 0.1153 % in the x direction and by 0.1165 % in the y direction compared to the regular fluid. Tables show the variation in Nusselt numbers, as well as a comparison of the effects of nanoparticle's aggregation model without and with radiation. Moreover, the numerical results obtained were compared with previously published data, demonstrating a satisfactory agreement. We firmly believe that this finding will have extensive implications for engineering and various industries.

12.
Sci Rep ; 13(1): 20885, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017247

RESUMEN

The coefficients of uniformity Christiansen's uniformity coefficient (CU) and distribution uniformity (DU) are an important parameter for designing irrigation systems, and are an accurate measure for water lose. In this study, three machine learning algorithms Random forest (RF), extreme gradient boosting (XGB) and random forest-extreme gradient boosting (XGB-RF) were developed to predict the water distribution uniformity based on operating pressure, heights of sprinkler, discharge, nozzle diameter, wind speed, humidity, highest and lowest temperature for three different impact sprinklers (KA-4, FOX and 2520) for square and triangular system layout based on four scenarios (input combinations). The main findings were; the highest CU value was 86.7% in the square system of 2520 sprinkler under 200 kPa, 0.5 m height and 0.855 m3/h (Nozzle 2.5 mm). Meanwhile, in the triangular system, it was 87.3% under the same pressure and discharge and 1 m height. For applied machine learning, the highest values of R2 were 0.796, 0.825 and 0.929 in RF, XGB and XGB-RF respectively in the first scenario for CU. Moreover, for the DU, the highest values of R2 were 0.701, 0.479 and 0.826 in RF, XGB and XGB-RF respectively in the first scenario. The obtained results revealed that the sprinkler height had the lowest impact on modeling of the water distribution uniformity.

13.
Sci Rep ; 13(1): 14795, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684341

RESUMEN

Access to dependable and environmentally friendly energy sources is critical to a country's economic growth and long-term development. As countries seek greener energy alternatives, the interaction of environmental elements, temperature, and sunlight becomes more critical in utilizing renewable energy sources such as wind and bioenergy. Solar power has received much attention due to extraordinary efficiency advances. under this context, the present work focus on solar radiation and chemical processes in the presence of modified ternary hybrid nanofluids (THNFs) circulating over an exponentially stretched surface in both aiding flow (A-F) and opposing flow (O-F) circumstances. The primary objective of this investigation is to dive into the complicated dynamics of these structures, which are distinguished by complex interactions involving radiation, chemical reactions, and the movement of fluids. We construct reduced ordinary differential equations from the governing equations using suitable similarity transformations, which allows for a more in-depth examination of the liquid's behavior. Numerical simulations using the Runge-Kutta Fehlberg (RKF) approach and shooting techniques are used to understand the underlying difficulties of these reduced equations. The results show that thermal radiation improves heat transmission substantially under O-F circumstances in contrast to A-F conditions. Furthermore, the reaction rate parameter has an exciting connection with concentration levels, with greater rates corresponding to lower concentrations. Furthermore, compared to the O-F scenario, the A-F scenario promotes higher heat transfer in the context of a modified nanofluid. Rising reaction rate and solid fraction volume enhanced mass transfer rate. The rate of thermal distribution in THNFs improves from 0.13 to 20.4% in A-F and 0.16 to 15.06% in O-F case when compared to HNFs. This study has real-world implications in several fields, including developing more efficient solar water heaters, solar thermal generating plants, and energy-saving air conditioners.

14.
Chemosphere ; 340: 139720, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37567270

RESUMEN

Chalcogenides, a promising class of electrode materials, attracted massive popularity owing to their exciting features of high conductive nature, high capacity, rich redox activities, and structural functionalities, making them the first choice for the electrochemical energy domain. This paper reported a new NiSe2-CuSe nanocomposite prepared via a wet-chemical synthesis followed by a low-cost and simple hydrothermal reaction. The physical characterization showed cubes and nanoparticles type morphological features of NiSe2 and CuSe products, while their composite reveals a combined morphological characteristic. The electrochemical properties were tested in an aqueous solution, demonstrating that the NiSe2-CuSe nanocomposite exhibits a high capacity of 376 C g-1, low resistance, good reversibility and rate capability in a three-electrode mode than bulk counterparts. For practical aspects, a battery-hybrid supercapacitor (BHSC) is developed with NiSe2-CuSe nanocomposite, and activated carbon (AC) serves as cathode and anode in two-cell mode operation. The built NiSe2-CuSe||AC/KOH BHSC expanded the voltage to 1.8 V and delivered the highest capacitance of 148 F g-1 and 55 F g-1 from 1 to 10 A g-1, suppressing most of the previously existing literature reports. Also, our built NiSe2-CuSe||AC/KOH BHSC displayed a high-power delivery of 8928 W kg-1 at a maximum energy density of 66.6 W h kg-1 and retained 91.7% capacitance after a long way of 10,000 cycles. These outstanding results demonstrate that metal selenides can be effectively utilized as alternative electrodes with high energy, rate performance, and long-term durability for advanced energy conversion and storage devices.


Asunto(s)
Carbón Orgánico , Suministros de Energía Eléctrica , Capacidad Eléctrica , Conductividad Eléctrica , Electrodos
15.
Nanotechnology ; 34(48)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37625394

RESUMEN

The customization of hybrid nanofluids to achieve a particular and controlled growth rate of thermal transport is done to meet the needs of applications in heating and cooling systems, aerospace and automotive industries, etc. Due to the extensive applications, the aim of the current paper is to derive a numerical solution to a wall jet flow problem through a stretching surface. To study the flow problem, authors have considered a non-Newtonian Eyring-Powell hybrid nanofluid with water and CoFe2O4and TiO2nanoparticles. Furthermore, the impact of a magnetic field and irregular heat sink/source are studied. To comply with the applications of the wall jet flow, the authors have presented the numerical solution for two cases; with and without a magnetic field. The numerical solution is derived with a similarity transformation and MATLAB-based bvp4c solver. The value of skin friction for wall jet flow at the surface decreases by more than 50% when the magnetic fieldMA=0.2is present. The stream function value is higher for the wall jet flow without the magnetic field. The temperature of the flow rises with the dominant strength of the heat source parameters. The results of this investigation will be beneficial to various applications that utilize the applications of a wall jet, such as in car defrosters, spray paint drying for vehicles or houses, cooling structures for the CPU of high-processor laptops, sluice gate flows, and cooling jets over turbo-machinery components, etc.

16.
Environ Res ; 237(Pt 1): 116691, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37574097

RESUMEN

Conductive agro-industrial wastes as accelerants in the anaerobic digestion (AD) of organic waste is a good technique for developing a rural circular economy, such as producing bioenergy and biofertilizer. This study disclosed the a role of sugar cane bagasse ash (SCBA) in enhancing the bioenergy (biogas) yield and digestate fertility via anaerobic co-digestion (AcoD) of buffalo dung (BD) and vegetable residue (VR) under mesophilic conditions (37 á´¼C). Firstly, an optimal BD/VR ratio (1:3) was determined based on biogas yield by introducing five different BD/VR ratios (1:0, 3:1, 1:1, 1:3, and 0:1) into AcoD systems. Secondly, the biogas yield was increased further by adding SCBA at five different concentrations (0, 0.5, 1, 1.5, and 2 wt%). Experimental results disclosed that the 1.5 wt% of SCBA gave the highest cumulative biogas yield (153.67 mL/g VS), COD removal rate (31.18%), and fertility (5.08%). Moreover, a framework is suggested to understand the role of SCBA in the enhanced DIET mechanism. This work documents an environmentally friendly and economical technique for developing a rural circular bioeconomy via the AD of organic agro-waste.

17.
Sci Rep ; 13(1): 12149, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500697

RESUMEN

Plastic sand paver blocks provide a sustainable alternative by using plastic waste and reducing the need for cement. This innovative approach leads to a more sustainable construction sector by promoting environmental preservation. No model or Equation has been devised that can predict the compressive strength of these blocks. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) to develop empirical models to forecast the compressive strength of plastic sand paver blocks (PSPB) comprised of plastic, sand, and fibre in an effort to advance the field. The database contains 135 results for compressive strength with seven input parameters. The R2 values of 0.87 for GEP and 0.91 for MEP for compressive strength reveal a relatively significant relationship between predicted and actual values. MEP outperformed GEP by displaying a higher R2 and lower values for statistical evaluations. In addition, a sensitivity analysis was conducted, which revealed that the sand grain size and percentage of fibres play an essential part in compressive strength. It was estimated that they contributed almost 50% of the total. The outcomes of this research have the potential to promote the reuse of PSPB in the building of green environments, hence boosting environmental protection and economic advantage.


Asunto(s)
Plásticos , Arena , Fuerza Compresiva , Inteligencia Artificial , Expresión Génica
18.
Materials (Basel) ; 16(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37512179

RESUMEN

The current work investigates the possibility of fabricating additive manufacturing products in solid-state form, from AA2011-T6 of 40 mm diameter rods as a feedstock, using an additive friction stir deposition (A-FSD) technique. The use of large diameter feedstocks, especially high-strength aluminum alloys (2XXX series), is a challenge, as it necessitates high power and the critical selection of the optimal A-FSD parameters, such as feed rate and spindle rotation speed. The study included applying a wide range of spindle rotation speeds, ranging from 400 to 1200 rpm, at three levels of feeding rates of 1, 3, and 5 mm/min. The AA2011-T6 friction stir deposited parts (FSDPs) were visually evaluated. This was followed by an examination of macrostructures through the thickness of the fabricated specimens. The characterization of microstructures was also carried out using optical microscopy and a scanning electron microscope equipped with advanced EDS analysis. Furthermore, the mechanical properties in terms of hardness and compressive strength of the AA2011-T6 base material (BM) and deposited materials were evaluated. Sound, additively manufactured products were successfully fabricated from 40 mm diameter AA2011-T6 feedstocks using the suggested deposition variables of 600 and 800 rpm spindle speeds and feeding rates of 1, 3, and 5 mm/min. The results indicated that the spindle speed and feeding rate govern the quality of the FSDPs. Furthermore, the axial load during the A-FSD process increased with increasing these parameters. In comparison to the AA2011-T6 BM, the additively deposited materials showed a refined grain structure and uniform dispersion of the fragment precipitates in their continuous multi-layers. The reduction ratio in grain size attains 71.56%, 76%, and 81.31% for the FSDPs processed at 800 rpm spindle speed and feeding rates of 1, 3 and 5 mm/min, respectively, compared to the grain size of BM. The Al2Cu and Al7Cu2Fe intermetallics are detected in the AA2011-T6 BM, and their deposited parts are in different shapes of spherical, almost spherical, irregular, and rod-like shapes. The compressive strength and hardness of the deposited parts increased with increasing spindle speed and feeding speeds. At a spindle speed of 800 rpm and a 5 mm/min feeding rate, the higher hardness and compressive strength gained were 85% and 93%, respectively, from that of the AA2011-T6 feedstock.

19.
One Health ; 17: 100601, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37520847

RESUMEN

High seroprevalence rates of several phleboviruses have been reported in domestic animals and humans in sandfly-infested regions. Sandfly Fever Sicilian virus (SFSV) and Toscana virus (TOSV) are two of these viruses commonly transmitted by Phlebotomus sandflies. While SFSV can cause rapidly resolving mild febrile illness, TOSV could involve the central nervous system (CNS), causing diseases ranging from aseptic meningitis to meningoencephalitis. Sandfly-associated phleboviruses have not been investigated before in Saudi Arabia and are potential causes of infection given the prevalence of sandflies in the country. Here, we investigated the seroprevalence of SFSV and TOSV in the western region of Saudi Arabia in samples collected from blood donors, livestock animals, and animal handlers. An overall seroprevalence of 9.4% and 0.8% was found in humans for SFSV and TOSV, respectively. Seropositivity was significantly higher in non-Saudis compared to Saudis and increased significantly with age especially for SFSV. The highest seropositivity rate was among samples collected from animal handlers. Specifically, in blood donors, 6.4% and 0.7% tested positive for SFSV and TOSV nAbs, respectively. Animal handlers showed higher seroprevalence rates of 16% and 1% for anti-SFSV and anti-TOSV nAbs, respectively, suggesting that contact with livestock animals could be a risk factor. Indeed, sera from livestock animals showed seropositivity of 53.3% and 4.4% in cows, 27.5% and 7.8% in sheep, 2.2% and 0.0% in goats, and 10.0% and 2.3% in camels for SFSV and TOSV, respectively. Together, these results suggest that both SFSV and TOSV are circulating in the western region of Saudi Arabia in humans and livestock animals, albeit at different rates, and that age and contact with livestock animals could represent risk factors for infection with these viruses.

20.
Catheter Cardiovasc Interv ; 102(2): 247-248, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37369982

RESUMEN

During left main (LM) bifurcation PCI using T and small protrusion (TAP) technique, after deployment of LM-left anterior descending (LAD) stent, left circumflex (LCx) stent was entangled at LM ostium with balloon and wire slippage. Ping-pong (dual) guide catheters were used to simultaneously fix the LM-LAD stent and snare the trapped stent. This technique proved effective in retrieving the lost stent and minimizing LM stent deformation.


Asunto(s)
Enfermedad de la Arteria Coronaria , Stents Liberadores de Fármacos , Intervención Coronaria Percutánea , Humanos , Angiografía Coronaria/métodos , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/métodos , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/cirugía , Resultado del Tratamiento , Stents , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...