Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1293230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155907

RESUMEN

Introduction: Ionizing radiation (IR) is effectively used in the treatment of oral malignancies; however, it might also significantly harm the surrounding tissues. Whey protein isolate (WP) is a protein derived from milk that exhibits a wide range of bioactivities. Therefore, the present research aimed to delineate the mitigating impact of WP against gamma irradiation-induced lingual damage. Methods: Rats were randomized into 5 groups: Control (saline, orally, 14 days), WP (WP; 0.5 g/kg b. w., orally, 14 days), IR (saline, orally, 14 days, exposed to 6 and 3 Gy on days 4 and 6, respectively), WP+IR (WP was given orally for 14 days before and after IR exposure; exposed to 6 and 3 Gy on days 4 and 6, respectively), and IR+WP (WP, orally, started 24 h after 1st IR exposure till the end of the experiment) groups. Samples were collected at two-time intervals (on the 7th and 14th days). Results and Discussion: Oxidative stress was stimulated upon IR exposure in tongue, indicated by boosted malondialdehyde (MDA) level, along with a decrease in the total antioxidant capacity (TAC) level, superoxide dismutase (SOD), and catalase (CAT) activities. Additionally, IR exposure depicted an increase of serum IgE, inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, along with overexpression mRNA levels of nuclear factor kappa-B transcription factor/p65 (NF-κB/p65), and down-regulation of nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase (HO-1) mRNA levels in tongue tissue. Moreover, IR triggered alterations in lingual histological architecture. The antioxidant and anti-inflammatory properties of WP mitigated oxidative damage, inflammation, and desquamation that were brought on following IR exposure. The protective administration of WP markedly decreases IR-induced lingual harm compared to the mitigation protocol. Our findings recommend WP supplements to the diets of cancer patients undergoing IR that might aid radioprotective effects.

2.
Environ Sci Pollut Res Int ; 29(8): 11790-11800, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34553279

RESUMEN

The current research was performed to evaluate the potential protective effect of Lactobacillus paracasei ssp. paracasei, Pediococcus acidilactici, Lactococcus lactis ssp. lactis, and silymarin in the alleviation of health (hepatic and renal) complications caused by carbon tetrachloride (CCl4) in rats. Healthy sixty albino rats were divided into six groups, the first group was control (negative), the second group (control positive) was injected CCl4 (1 ml/kg, 1:1 v/v paraffin oil mixture, i.p. every third day for 8 weeks), the third group (CCl4 + silymarin group) receiving both CCl4 and daily silymarin therapy (50 mg/kg, oral), and the fourth group: CCl4 + Lactobacillus paracasei (1 ml orally). The fifth group (CCl4 + Pediococcus acidilactici 1 ml orally) and the sixth group (CCl4 + Lactococcus lactis 1 ml orally) for 8 weeks per day. Biochemical markers were tested for blood, liver, and kidney tissue. Histopathological examination of the liver and kidney tissues was performed. The findings obtained have shown that Lactobacillus paracasei ssp. paracasei, Pediococcus acidilactici, and Lactococcus lactis ssp. lactis improved the disrupted biochemical parameters caused by CCl4 therapy. Besides, the findings of the histopathology are in consistent with biochemical parameters and the protective ability of lactic acid bacteria suggesting that the best lactic acid bacteria were Pediococcus acidilactici that helped strengthen liver fibrosis caused by CCl4 therapy, while the best bacterium for improving renal damage was Lactococcus lactis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Productos Lácteos Cultivados , Lactobacillales , Lactococcus lactis , Animales , Tetracloruro de Carbono/toxicidad , Ratas
3.
Environ Sci Pollut Res Int ; 28(21): 27207-27217, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33507508

RESUMEN

This study aimed to examine the impact of ethanolic Avicennia marina (A. marina) leaves extract against seven pathogenic bacteria and the protective effect of this plant against hyperlipidemia caused by dexamethasone (DEX)-treated rats. Forty-eight male rats weighing between 150 and 200 g were randomly selected into six groups containing eight rats in each group. Moreover, in vitro antioxidant DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging activity, FRAP (ferric reducing antioxidant power), and ABTS assay were also analyzed for leaf extract. Results showed that the IC50 values were observed as 193.9 ± 1.03 µg/mL, 340.29 ± 8.16 µM TE/mg, and 326.8 ± 6.14 µM TE/mg for DPPH, FRAP, and ABTS radical scavenging activities, respectively. A. marina leaves ethanolic extract exhibited higher activity against Candida albicans and Bacillus subtilis, moderate activity against Salmonella typhimurium, and Vibrio damsel. The administration of DEX resulted in significant (P < 0.05) increase in the levels of MDA concentration, TG, TC, LDL, LDH, and glucose but decreased significantly in HDL. Treatment with A. marina extract positively reversed the distorted lipid profile and peroxidation and improved MDA, GSH, NO, and SOD activities in DEX-administered rats. Histological investigation of liver tissue sections showed that the treatment with A. marina leaves extract moderate the fatty change caused by DEX. It is concluded that A. marina leaves extract improved the hypolipidemic property of DEX administration in comparison with standard treatment with atorvastatin.


Asunto(s)
Antioxidantes , Avicennia , Animales , Antibacterianos/farmacología , Hipolipemiantes/farmacología , Masculino , Extractos Vegetales , Hojas de la Planta , Ratas
4.
Saudi J Biol Sci ; 28(1): 785-792, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424368

RESUMEN

OBJECTIVE: To investigate the effect of the ethyl acetate fraction of the aerial parts of E. paralias L. F. Euphorbiaceae on nephroprotective, cytotoxic, and antioxidant. METHODS: different spectroscopic and spectrophotometric methods were applied to identify phytoconstituents. The nephroprotective potential of E. paralias ethyl acetate fraction (Ep EtOAc) was evaluated in male rats with thioacetamide-induced kidney injury, as wll as cytotoxic activity was evaluated using a viability assay, and the antioxidant activity was evaluated using the DPPH method. Results: quantitative estimation of total phenolics and flavonoids of E. paralias was performed using unique spectrophotometric methods. The polyphenolic compounds gallic acid (1), ellagic acid (2), kaempferol-3-O-(6″-O-galloyl-ß-D-glucopyranoside) (3), quercetin-3-O-ß-D-glucopyranoside (4) and quercetin-3-O-ß-D-arabinoside (5) were isolated from the ethyl acetate fraction of the aerial parts of E. paralias. The thioacetamide administration resulted in marked nephrotoxicity, but pretreatment with Ep EtOAc significantly attenuated the nephrotoxicity through alteration of kidney biomarkers, thereby improving the redox status of the tissue and restoring serum biochemical parameters nearly to normal levels. This study revealed a significant cytotoxic and strong antioxidant effect. Conclusion: we conclude that the Ep EtOAc may be used in the future as nephroprotective, cytotoxic, and antioxidant agent derived from a natural source.

5.
Ecotoxicol Environ Saf ; 192: 110297, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061979

RESUMEN

The present study was conducted in order to assess the chemical composition of Laurus, its antioxidant activities, and benefit from the Laurus extract effect on neurotoxicity caused by lead acetate (Pb). Chemical profile was assayed by using liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS). In this study, 40 male rats were divided into four groups (10 rats per each group): (1) control group, (2) Laurus group: rats treated with 250 mg/kg b. wt. of Laurus leaves extract, (3) Pb group: rats treated with 100 mg/kg b. wt. of lead acetate, (4) Pb + Laurus group: rats treated with 250 mg/kg b. wt. of Laurus leaves extract in addition to lead acetate for 30 days. At the end of experiment, some estimates were calculated from blood samples, brain tissue, and histological examination. The results showed that the extract is highly affluent in total flavonoids, total phenolic, and also has antioxidant activity. The LC-MS appeared a wide range of compounds in the extract. The oxidative stress resulted from exposure to lead acetate has been reported to cause reduction in body and brain weights, levels of RBCs, acetylcholinesterase (AChE), GSH, SOD, and CAT in addition to increase in levels of WBCs and MAD. Moreover, Laurus leaves extract notably lessened the biochemical changes caused by lead acetate in the blood, homogenate, and brain tissue (P < 0.05). The current study indicates the antioxidant activity of Laurus leaves extract and assumes that it has a defensive role against the oxidative damage caused by lead in a rat's brain.


Asunto(s)
Antioxidantes/uso terapéutico , Laurus/química , Intoxicación del Sistema Nervioso por Plomo/prevención & control , Extractos Vegetales/uso terapéutico , Animales , Antioxidantes/química , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Flavonoides/química , Intoxicación del Sistema Nervioso por Plomo/metabolismo , Intoxicación del Sistema Nervioso por Plomo/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Fenoles/química , Extractos Vegetales/química , Hojas de la Planta/química , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...