Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Foods Hum Nutr ; 78(4): 698-703, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919537

RESUMEN

Dietary prebiotic fibers play an important role in modulating gut microbiota by enhancing the abundance of beneficial microorganisms and their bioactive metabolites. However, dietary fibers are a structurally heterogeneous class of polysaccharides, varying in molar mass, branching patterns, and monosaccharide composition, which could influence their utilization by various gut microorganisms. The present study aimed to investigate the effects of molar mass and chemical structure of wheat arabinoxylan fiber (AX) on the growth and metabolism of two key gut resident bacteria (Faecalibacterium prausnitzii and Lacticaseibacillus rhamnosus LGG), which are linked to human health. For this purpose, low, medium, and high molar masses of AX (LAX, MAX, and HAX, respectively) were modified with specific α-arabinofuranosidases to leave only singly substituted, only doubly substituted, or unsubstituted xylose units. Almost all the modified AX samples showed a better prebiotic score than unmodified AX for different molar masses. The modified LAX exhibited a better prebiotic effect than HAX and MAX. In addition, LAX, with doubly substituted xylose units, exhibited the highest prebiotic potential and SCFA production by both microorganisms. Furthermore, AX, either singly or doubly substituted, had a consistent impact on L. rhamnosus growth, whereas AX, with all arabinose residues removed, had a greater impact on F. prausnitzii. These findings support the potential of bioengineered AX as next-generation prebiotics targeting health-related gut microbes.


Asunto(s)
Microbioma Gastrointestinal , Prebióticos , Humanos , Prebióticos/microbiología , Triticum/química , Xilosa , Fibras de la Dieta/análisis , Xilanos/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-37646968

RESUMEN

In this study, we aimed to develop a protective probiotic coculture to inhibit the growth of Salmonella enterica serovar Typhimurium in the simulated chicken gut environment. Bacterial strains were isolated from the digestive mucosa of broilers and screened in vitro against Salmonella Typhimurium ATCC 14028. A biocompatibility coculture test was performed, which identified two biocompatible strains, Ligilactobacillus salivarius UO.C109 and Ligilactobacillus saerimneri UO.C121 with high inhibitory activity against Salmonella. The cell-free supernatant (CFS) of the selected isolates exhibited dose-dependent effects, and the inhibitory agents were confirmed to be proteinaceous by enzymatic and thermal treatments. Proteome and genome analyses revealed the presence of known bacteriocins in the CFS of L. salivarius UO.C109, but unknown for L. saerimneri UO.C121. The addition of these selected probiotic candidates altered the bacterial community structure, increased the diversity of the chicken gut microbiota challenged with Salmonella, and significantly reduced the abundances of Enterobacteriaceae, Parasutterlla, Phascolarctobacterium, Enterococcus, and Megamonas. It also modulated microbiome production of short-chain fatty acids (SCFAs) with increased levels of acetic and propionic acids after 12 and 24 h of incubation compared to the microbiome challenged with S. Typhimurium. Furthermore, the selected probiotic candidates reduced the adhesion and invasion of Salmonella to Caco-2 cells by 37-39% and 51%, respectively, after 3 h of incubation, compared to the control. These results suggest that the developed coculture probiotic strains has protective activity and could be an effective strategy to control Salmonella infections in poultry.

3.
J Appl Microbiol ; 132(6): 4452-4465, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35338685

RESUMEN

AIMS: This study aims to isolate probiotic bacteria candidates from various starter cultures and fermented foods and characterize their ability to produce γ-aminobutyric acid (GABA). GABA is a major inhibitory neuromediator of the central and enteric nervous systems with a role in several health disorders. METHODS AND RESULTS: Fourteen strains of lactic acid bacteria were isolated from food environment and screened for the presence of the glutamate decarboxylase (gadB) gene using PCR and GAD enzymatic assay. The identified potent GABA-producers included Strep. thermophilus, Lactiplantibacillus plantarum and Lact. delbrueckii subsp. bulgaricus. GC-FID analyses confirmed the high GABA production capacity of Strep. thermophilus ST16 (1641.5 ± 154.15 µmol l-1 ), Strep. thermophilus ST8 (1724.5 ± 48.08 µmol/L). To a lesser extent, Bif. animalis ST20, Lact. acidophilus LP16-2 and Ent. faecium ST3 produced 947.5 ± 70.71, 918.0 ± 121.42, and 907.83 ± 55.15 µmol/L of GABA, respectively. These potent strains were able to grow and produce GABA in MRS broth and pre-fermented Macfarlane broth, the latter medium mimicking the nutrient and metabolome composition encountered in the colon. The identified bioactive strains exhibited strong biological safety and probiotic potential profiles as indicated by sensitivity to antibiotics, absence of virulence factors and survival in gastrointestinal conditions. CONCLUSIONS: Several GABA producing probiotic candidates, including Bif. animals ST20, Strep. thermophilus ST8, Lact. acidophilus LP16-2, L. plantarum LP6 & LP9, and Ent. faecium ST3, have shown potential to grow under simulated colonic conditions. SIGNIFICANCE AND IMPACT OF STUDY: Findings from this study provide evidence of the suitability of the isolated GABA-producing probiotic candidates for the development of health-oriented functional food products.


Asunto(s)
Alimentos Fermentados , Lactobacillales , Probióticos , Fermentación , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Lactobacillales/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Front Physiol ; 12: 715506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646151

RESUMEN

Inflammatory bowel diseases (IBD) are chronic medical disorders characterized by recurrent gastrointestinal inflammation. While the etiology of IBD is still unknown, the pathogenesis of the disease results from perturbations in both gut microbiota and the host immune system. Gut microbiota dysbiosis in IBD is characterized by depleted diversity, reduced abundance of short chain fatty acids (SCFAs) producers and enriched proinflammatory microbes such as adherent/invasive E. coli and H2S producers. This dysbiosis may contribute to the inflammation through affecting either the immune system or a metabolic pathway. The immune responses to gut microbiota in IBD are extensively discussed. In this review, we highlight the main metabolic pathways that regulate the host-microbiota interaction. We also discuss the reported findings indicating that the microbial dysbiosis during IBD has a potential metabolic impact on colonocytes and this may underlie the disease progression. Moreover, we present the host metabolic defectiveness that adds to the impact of symbiont dysbiosis on the disease progression. This will raise the possibility that gut microbiota dysbiosis associated with IBD results in functional perturbations of host-microbiota interactions, and consequently modulates the disease development. Finally, we shed light on the possible therapeutic approaches of IBD through targeting gut microbiome.

5.
Foods ; 10(4)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921812

RESUMEN

Clostridium tyrobutyricum spores survive milk pasteurization and cause late blowing of cheeses and significant economic loss. The effectiveness of nisin-producing Lactococcus lactis ssp. lactis 32 as a protective strain for control the C. tyrobutyricum growth in Cheddar cheese slurry was compared to that of encapsulated nisin-A. The encapsulated nisin was more effective, with 1.0 log10 reductions of viable spores after one week at 30 °C and 4 °C. Spores were not detected for three weeks at 4 °C in cheese slurry made with 1.3% salt, or during week 2 with 2% salt. Gas production was observed after one week at 30 °C only in the control slurry made with 1.3% salt. In slurry made with the protective strain, the reduction in C. tyrobutyricum count was 0.6 log10 in the second week at 4 °C with both salt concentration. At 4 °C, nisin production started in week 2 and reached 97 µg/g after four weeks. Metabarcoding analysis targeting the sequencing of 16S rRNA revealed that the genus Lactococcus dominated for four weeks at 4 °C. In cheese slurry made with 2% salt, the relative abundance of the genus Clostridium decreased significantly in the presence of nisin or the protective strain. The results indicated that both strategies are able to control the growth of Clostridium development in Cheddar cheese slurries.

6.
Foods ; 9(12)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297482

RESUMEN

This research, developed within an exchange program between Italy and Canada, represents the first step of a three-year project intended to evaluate the potential of nisin-producing Lactococcus lactis strains isolated from Italian and Canadian dairy products to select a consortium of strains to be used as biocontrol agents in Crescenza and Cheddar cheese production. In this framework, the acidification and the production of nisin in milk, and the volatile molecule profiles of the fermented milk, were recorded. The strains were further tested for their anti-Listeria monocytogenes activity in milk. The data obtained highlighted good potential for some of the tested strains, which showed production of nisin beginning within 12 h after the inoculation and reaching maximum levels between 24 and 48 h. The highest inactivation levels of L. monocytogenes in milk was reached in the presence of the strains 101877/1, LBG2, 9FS16, 11FS16, 3LC39, FBG1P, UL36, UL720, UL35. The strains generated in milk-specific volatile profiles and differences in the presence of fundamental aromatic molecules of dairy products, such as 2-butanone and diacetyl. The results highlight the interesting potential of some L. lactis strains, the producer of nisin, to be further used as biocontrol agents, although the strains need to be tested for interaction with traditional thermophilic starters and tested in real cheesemaking conditions.

7.
Int J Biol Macromol ; 153: 1186-1192, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31756478

RESUMEN

This study aimed to develop a novel nontoxic, biocompatible, biodegradable, and cost-efficient matrix for the encapsulation of antimicrobial component (nisin) to be used as bio-preservative agent in cheddar cheese. Nisin A loaded beads were prepared from alginate at 0.5%, 1% and 2%; and hi-maize resistant starch at 0.5 or 1%. Beads were characterized by microscopic examination and transmission electron microscopy. Molecular structures were investigated by FTIR, and particle size distributions were measured. The Entrapment efficiency (EE) was measured microbiologically by agar diffusion. The encapsulated nisin showed similar inhibition activities in all developed formulas with an inhibition zone of 15 ± 2 mm. The FTIR analysis confirmed the compatibility of the nisin with sodium alginate and starch. The formulas composed of 1% Alginate and 0.5% Non-Gelatinized Starch had the highest encapsulation efficiency among other formulas (33%). Moreover, that formula allowed the protection and gradual release of the encapsulated nisin during a long-term storage for up to two months. Application in cheddar cheese proved the inhibition of encapsulated nisin on the growth of C. tyrobutyricum at the large-scale production. In conclusion, the alginate (Alg)/non-gelatinized resistant starch formula is suitable for the protection and controlled release of nisin in food applications.


Asunto(s)
Alginatos/química , Portadores de Fármacos/química , Liberación de Fármacos , Nisina/química , Almidón/química , Cápsulas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...