Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893150

RESUMEN

Immunotherapy is a rapidly advancing field of research in the treatment of conditions such as cancer and autoimmunity. Nanomaterials can be designed for immune system manipulation, with precise targeted delivery and improved immunomodulatory efficacy. Here, we elaborate on various strategies using nanomaterials, including liposomes, polymers, and inorganic NPs, and discuss their detailed design intricacies, mechanisms, and applications, including the current regulatory issues. This type of nanomaterial design for targeting specific immune cells or tissues and controlling release kinetics could push current technological frontiers and provide new and innovative solutions for immune-related disorders and diseases without off-target effects. These materials enable targeted interactions with immune cells, thereby enhancing the effectiveness of checkpoint inhibitors, cancer vaccines, and adoptive cell therapies. Moreover, they allow for fine-tuning of immune responses while minimizing side effects. At the intersection of nanotechnology and immunology, nanomaterial-based platforms have immense potential to revolutionize patient-centered immunotherapy and reshape disease management. By prioritizing safety, customization, and compliance with regulatory standards, these systems can make significant contributions to precision medicine, thereby significantly impacting the healthcare landscape.

2.
Int J Biol Macromol ; 269(Pt 1): 131960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697430

RESUMEN

Rare diseases, defined by their low prevalence, present significant challenges, including delayed detection, expensive treatments, and limited research. This study delves into the genetic basis of two noteworthy rare diseases in Saudi Arabia: Phenylketonuria (PKU) and Spinal Muscular Atrophy (SMA). PKU, resulting from mutations in the phenylalanine hydroxylase (PAH) gene, exhibits geographical variability and impacts intellectual abilities. SMA, characterized by motor neuron loss, is linked to mutations in the survival of motor neuron 1 (SMN1) gene. Recognizing the importance of unveiling signature genomics in rare diseases, we conducted a quantitative study on PAH and SMN1 proteins of multiple organisms by employing various quantitative techniques to assess genetic variations. The derived signature-genomics contributes to a deeper understanding of these critical genes, paving the way for enhanced diagnostics for disorders associated with PAH and SMN1.


Asunto(s)
Genómica , Atrofia Muscular Espinal , Fenilalanina Hidroxilasa , Fenilcetonurias , Enfermedades Raras , Proteína 1 para la Supervivencia de la Neurona Motora , Atrofia Muscular Espinal/genética , Fenilcetonurias/genética , Humanos , Fenilalanina Hidroxilasa/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Genómica/métodos , Enfermedades Raras/genética , Mutación , Arabia Saudita/epidemiología
3.
Int J Biol Macromol ; 259(Pt 1): 128998, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176503

RESUMEN

Moonlighting proteins, known for their ability to perform multiple, often unrelated functions within a single polypeptide chain, challenge the traditional "one gene, one protein, one function" paradigm. As organisms evolved, their genomes remained relatively stable in size, but the introduction of post-translational modifications and sub-strategies like protein promiscuity and intrinsic disorder enabled multifunctionality. Enzymes, in particular, exemplify this phenomenon, engaging in unrelated processes alongside their primary catalytic roles. This study employs a systematic, quantitative informatics approach to shed light on human moonlighting protein sequences. Phylogenetic analyses of human moonlighting proteins are presented, elucidating the distal-proximal relationships among these proteins based on sequence-derived quantitative features. The findings unveil the captivating world of human moonlighting proteins, urging further investigations in the emerging field of moonlighting proteomics, with the potential for significant contributions to our understanding of multifunctional proteins and their roles in diverse cellular processes and diseases.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas , Humanos , Filogenia , Proteínas/química , Genoma
4.
Comput Biol Med ; 170: 107899, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232455

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rapidly evolving RNA virus behind the COVID-19 pandemic, has spawned numerous variants since its 2019 emergence. The multifunctional Nonstructural protein 14 (NSP14) enzyme, possessing exonuclease and messenger RNA (mRNA) capping capabilities, serves as a key player. Notably, single and co-occurring mutations within NSP14 significantly influence replication fidelity and drive variant diversification. This study comprehensively examines 120 co-mutations, 68 unique mutations, and 160 conserved residues across NSP14 homologs, shedding light on their implications for phylogenetic patterns, pathogenicity, and residue interactions. Quantitative physicochemical analysis categorizes 3953 NSP14 variants into three clusters, revealing genetic diversity. This research underscoresthe dynamic nature of SARS-CoV-2 evolution, primarily governed by NSP14 mutations. Understanding these genetic dynamics provides valuable insights for therapeutic and vaccine development.


Asunto(s)
COVID-19 , Exorribonucleasas , SARS-CoV-2 , Proteínas no Estructurales Virales , Humanos , COVID-19/genética , Exorribonucleasas/química , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Mutación/genética , Pandemias , Filogenia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Replicación Viral/genética , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA