Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Artif Intell ; 5: 866920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573901

RESUMEN

In recent years, the ability of intelligent systems to be understood by developers and users has received growing attention. This holds in particular for social robots, which are supposed to act autonomously in the vicinity of human users and are known to raise peculiar, often unrealistic attributions and expectations. However, explainable models that, on the one hand, allow a robot to generate lively and autonomous behavior and, on the other, enable it to provide human-compatible explanations for this behavior are missing. In order to develop such a self-explaining autonomous social robot, we have equipped a robot with own needs that autonomously trigger intentions and proactive behavior, and form the basis for understandable self-explanations. Previous research has shown that undesirable robot behavior is rated more positively after receiving an explanation. We thus aim to equip a social robot with the capability to automatically generate verbal explanations of its own behavior, by tracing its internal decision-making routes. The goal is to generate social robot behavior in a way that is generally interpretable, and therefore explainable on a socio-behavioral level increasing users' understanding of the robot's behavior. In this article, we present a social robot interaction architecture, designed to autonomously generate social behavior and self-explanations. We set out requirements for explainable behavior generation architectures and propose a socio-interactive framework for behavior explanations in social human-robot interactions that enables explaining and elaborating according to users' needs for explanation that emerge within an interaction. Consequently, we introduce an interactive explanation dialog flow concept that incorporates empirically validated explanation types. These concepts are realized within the interaction architecture of a social robot, and integrated with its dialog processing modules. We present the components of this interaction architecture and explain their integration to autonomously generate social behaviors as well as verbal self-explanations. Lastly, we report results from a qualitative evaluation of a working prototype in a laboratory setting, showing that (1) the robot is able to autonomously generate naturalistic social behavior, and (2) the robot is able to verbally self-explain its behavior to the user in line with users' requests.

2.
Pain Res Manag ; 2022: 6635496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069957

RESUMEN

INTRODUCTION: The experience of pain is regularly accompanied by facial expressions. The gold standard for analyzing these facial expressions is the Facial Action Coding System (FACS), which provides so-called action units (AUs) as parametrical indicators of facial muscular activity. Particular combinations of AUs have appeared to be pain-indicative. The manual coding of AUs is, however, too time- and labor-intensive in clinical practice. New developments in automatic facial expression analysis have promised to enable automatic detection of AUs, which might be used for pain detection. OBJECTIVE: Our aim is to compare manual with automatic AU coding of facial expressions of pain. METHODS: FaceReader7 was used for automatic AU detection. We compared the performance of FaceReader7 using videos of 40 participants (20 younger with a mean age of 25.7 years and 20 older with a mean age of 52.1 years) undergoing experimentally induced heat pain to manually coded AUs as gold standard labeling. Percentages of correctly and falsely classified AUs were calculated, and we computed as indicators of congruency, "sensitivity/recall," "precision," and "overall agreement (F1)." RESULTS: The automatic coding of AUs only showed poor to moderate outcomes regarding sensitivity/recall, precision, and F1. The congruency was better for younger compared to older faces and was better for pain-indicative AUs compared to other AUs. CONCLUSION: At the moment, automatic analyses of genuine facial expressions of pain may qualify at best as semiautomatic systems, which require further validation by human observers before they can be used to validly assess facial expressions of pain.


Asunto(s)
Expresión Facial , Dolor , Adulto , Humanos , Persona de Mediana Edad , Dolor/diagnóstico
3.
IEEE Trans Pattern Anal Mach Intell ; 43(6): 1815-1831, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-31825861

RESUMEN

Pain sensation is essential for survival, since it draws attention to physical threat to the body. Pain assessment is usually done through self-reports. However, self-assessment of pain is not available in the case of noncommunicative patients, and therefore, observer reports should be relied upon. Observer reports of pain could be prone to errors due to subjective biases of observers. Moreover, continuous monitoring by humans is impractical. Therefore, automatic pain detection technology could be deployed to assist human caregivers and complement their service, thereby improving the quality of pain management, especially for noncommunicative patients. Facial expressions are a reliable indicator of pain, and are used in all observer-based pain assessment tools. Following the advancements in automatic facial expression analysis, computer vision researchers have tried to use this technology for developing approaches for automatically detecting pain from facial expressions. This paper surveys the literature published in this field over the past decade, categorizes it, and identifies future research directions. The survey covers the pain datasets used in the reviewed literature, the learning tasks targeted by the approaches, the features extracted from images and image sequences to represent pain-related information, and finally, the machine learning methods used.


Asunto(s)
Algoritmos , Expresión Facial , Humanos , Aprendizaje Automático , Dolor/etiología , Dimensión del Dolor
4.
BMC Geriatr ; 17(1): 33, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28125956

RESUMEN

BACKGROUND: Given the unreliable self-report in patients with dementia, pain assessment should also rely on the observation of pain behaviors, such as facial expressions. Ideal observers should be well trained and should observe the patient continuously in order to pick up any pain-indicative behavior; which are requisitions beyond realistic possibilities of pain care. Therefore, the need for video-based pain detection systems has been repeatedly voiced. Such systems would allow for constant monitoring of pain behaviors and thereby allow for a timely adjustment of pain management in these fragile patients, who are often undertreated for pain. METHODS: In this road map paper we describe an interdisciplinary approach to develop such a video-based pain detection system. The development starts with the selection of appropriate video material of people in pain as well as the development of technical methods to capture their faces. Furthermore, single facial motions are automatically extracted according to an international coding system. Computer algorithms are trained to detect the combination and timing of those motions, which are pain-indicative. RESULTS/CONCLUSION: We hope to encourage colleagues to join forces and to inform end-users about an imminent solution of a pressing pain-care problem. For the near future, implementation of such systems can be foreseen to monitor immobile patients in intensive and postoperative care situations.


Asunto(s)
Demencia/complicaciones , Dimensión del Dolor/métodos , Dolor , Tecnología de Sensores Remotos/métodos , Anciano , Expresión Facial , Humanos , Dolor/complicaciones , Dolor/diagnóstico , Dolor/psicología , Manejo del Dolor/métodos , Grupo de Atención al Paciente/organización & administración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA