Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e31669, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38828348

RESUMEN

The spread of heavy metal in water bodies, particularly lead (Pb), has occurred as a global threat to human existence. In this study, NiO nanoparticles (NPs) was prepared by coprecipitation approach using Hagenia abyssinica plant extract mediated as a reducing and template agent for the removal of Pb from aqueous solution. X-ray crystallographic diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and Brunauer-Emmett-Teller (BET) techniques were employed for the characterization of as prepared NiO NPs. The efficacy of adsorbent was evaluated on the removal of Pb2+ by varying the adsorptive parameters such as pH, Bio-NiO amount, interaction time, and Pb2+ concentration. The adsorption was 99.99% at pH, 0.06 g of NiO NPs dose, 60 mg L-1 concentrations of Pb2+ within 80 min contact time. The higher removal efficiency is could be due to higher surface area (151 m2g-1). The adsorption process was best fitted with Freundlich isotherm and pseudo-second order kinetic models, implying that it was chemical adsorption on the heterogeneous surface. The adsorption intensity (n) was found to be 1/n < 1 (0.47) indicating adsorption of Pb2+ on the surface of Bio-NiO NPs was favorable with a maximum adsorption capacity 60.13 mg g-1. The reusability studies confirmed that the synthesized bio-NiO NPs were an effective adsorbent for removing Pb2+ from aqueous solution up to five cycles.

2.
ACS Omega ; 8(19): 17209-17219, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37214697

RESUMEN

The enhanced worldwide concern for the protection and safety of the environment has made the scientific community focus their devotion on novel and highly effective approaches to heavy metals such as cadmium (Cd) pollutant removal. In this research, Dodonaea angustifolia plant extract-mediated Al2O3 and Cu2O nanoparticle (NP) syntheses were accomplished using the coprecipitation method, and the Cu2O/Al2O3 nanocomposite was prepared by simple mixing of Cu2O and Al2O3 NPs for the removal of Cd(II) ions from aqueous solution. Therefore, an efficient green, economical, facile, and eco-friendly synthesis method was employed, which improved the aggregation of individual metal oxide NPs. The chemical and physical properties of the nanocomposite were examined by different characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) surface area analysis. Furthermore, the performances of the nanoadsorbents for the adsorptive eradication of Cd2+ ions from water were investigated. The influence of pH, contact time, initial Cd quantity, and nanocomposite amount on adsorption effectiveness was carefully studied. The adsorption rates of the Cu2O/Al2O3 nanocomposite were rapid, and adsorption equilibrium was attained within 60 min for 97.36% removal of Cd(II) from water. The adsorption isotherm data were best fitted by the pseudo-second-order kinetic and Langmuir isotherm models with the highest adsorption ability of 4.48 mg/g. Therefore, the synthesized Cu2O/Al2O3 nanocomposite could be a potential candidate for a highly efficient adsorbent for heavy metal ion removal from aqueous solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA