Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Aliment Pharmacol Ther ; 59(7): 852-864, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311841

RESUMEN

BACKGROUND: The Rome Foundation Global Epidemiology Study (RFGES) found that 40.3% of adults in 26 internet-surveyed countries met Rome IV criteria for disorders of gut-brain interaction (DGBI). However, additional people not meeting DGBI criteria may also be burdened by frequent gastrointestinal symptoms. AIMS: To explore the prevalence and demographic distribution of sub-diagnostic gastrointestinal symptoms, and the hypothesised associated effects on quality of life (QoL), life functioning and healthcare needs. METHODS: We analysed data from the RFGES survey, which included the Rome IV diagnostic questionnaire and QoL, psychological, work productivity and healthcare questions. RESULTS: Of the 50,033 people without a history of organic gastrointestinal disorders, 25.3% classified in the sub-diagnostic group (no DGBI but one or more frequent gastrointestinal symptoms), 41.4% had DGBI and 33.4% had no frequent gastrointestinal symptoms (non-GI group). Sub-diagnostic prevalence in different world regions ranged from 22.2% (North America) to 30.5% (Middle East), was slightly higher among males than females and decreased with age. The sub-diagnostic group was intermediate between the non-GI and DGBI groups, and significantly different from both of them on QoL, anxiety, depression, somatisation, healthcare utilisation and life and work impairment. CONCLUSIONS: One in four adults without organic gastrointestinal disorders or DGBI report frequent gastrointestinal symptoms. This sub-diagnostic group has reduced QoL, greater psychological and non-GI bodily symptoms, impaired work productivity and life activities and greater healthcare use compared to non-GI individuals. This suggests that many in this sub-diagnostic group might benefit from healthcare services or symptom self-management advice.


Asunto(s)
Enfermedades Gastrointestinales , Calidad de Vida , Adulto , Masculino , Femenino , Humanos , Prevalencia , Enfermedades Gastrointestinales/diagnóstico , Enfermedades Gastrointestinales/epidemiología , Encuestas y Cuestionarios , América del Norte
3.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824966

RESUMEN

Females are more sensitive to social exclusion, which could contribute to their heightened susceptibility to anxiety disorders. Chronic social isolation stress (CSIS) for at least 7 weeks after puberty induces anxiety-related behavioral adaptations in female mice. Here, we show that Arginine vasopressin receptor 1a ( Avpr1a )-expressing neurons in the central nucleus of the amygdala (CeA) mediate these sex-specific effects, in part, via projections to the caudate putamen. Loss of function studies demonstrate that AVPR1A signaling in the CeA is required for effects of CSIS on anxiety-related behaviors in females but has no effect in males or group housed females. This sex-specificity is mediated by AVP produced by a subpopulation of neurons in the posterodorsal medial nucleus of the amygdala that project to the CeA. Estrogen receptor alpha signaling in these neurons also contributes to preferential sensitivity of females to CSIS. These data support new therapeutic applications for AVPR1A antagonists in women.

4.
Biol Psychiatry ; 94(5): 424-436, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36805080

RESUMEN

BACKGROUND: A large body of evidence highlights the importance of genetic variants in the development of psychiatric and metabolic conditions. Among these, the TaqIA polymorphism is one of the most commonly studied in psychiatry. TaqIA is located in the gene that codes for the ankyrin repeat and kinase domain containing 1 kinase (Ankk1) near the dopamine D2 receptor (D2R) gene. Homozygous expression of the A1 allele correlates with a 30% to 40% reduction of striatal D2R, a typical feature of addiction, overeating, and other psychiatric pathologies. The mechanisms by which the variant influences dopamine signaling and behavior are unknown. METHODS: Here, we used transgenic and viral-mediated strategies to reveal the role of Ankk1 in the regulation of activity and functions of the striatum. RESULTS: We found that Ankk1 is preferentially enriched in striatal D2R-expressing neurons and that Ankk1 loss of function in the dorsal and ventral striatum leads to alteration in learning, impulsivity, and flexibility resembling endophenotypes described in A1 carriers. We also observed an unsuspected role of Ankk1 in striatal D2R-expressing neurons of the ventral striatum in the regulation of energy homeostasis and documented differential nutrient partitioning in humans with or without the A1 allele. CONCLUSIONS: Overall, our data demonstrate that the Ankk1 gene is necessary for the integrity of striatal functions and reveal a new role for Ankk1 in the regulation of body metabolism.


Asunto(s)
Conducta Adictiva , Dopamina , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Neuronas/metabolismo , Recompensa
5.
Cell Rep ; 41(8): 111698, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36417883

RESUMEN

Therapies based on glucagon-like peptide-1 (GLP-1) long-acting analogs and insulin are often used in the treatment of metabolic diseases. Both insulin and GLP-1 receptors are expressed in metabolically relevant brain regions, suggesting a cooperative action. However, the mechanisms underlying the synergistic actions of insulin and GLP-1R agonists remain elusive. In this study, we show that insulin-induced hypoglycemia enhances GLP-1R agonists entry in hypothalamic and area, leading to enhanced whole-body fat oxidation. Mechanistically, this phenomenon relies on the release of tanycyctic vascular endothelial growth factor A, which is selectively impaired after calorie-rich diet exposure. In humans, low blood glucose also correlates with enhanced blood-to-brain passage of insulin, suggesting that blood glucose gates the passage other energy-related signals in the brain. This study implies that the preventing hyperglycemia is important to harnessing the full benefit of GLP-1R agonist entry in the brain and action onto lipid mobilization and body weight loss.


Asunto(s)
Glucemia , Factor A de Crecimiento Endotelial Vascular , Humanos , Glucemia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Homeostasis , Encéfalo/metabolismo
6.
Cell Metab ; 34(10): 1532-1547.e6, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198294

RESUMEN

The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored. Here, we show that obesity promotes anatomically restricted remodeling of hypothalamic astrocyte activity. In the paraventricular nucleus (PVN) of the hypothalamus, chemogenetic manipulation of astrocytes results in bidirectional control of neighboring neuron activity, autonomic outflow, glucose metabolism, and energy balance. This process recruits a mechanism involving the astrocytic control of ambient glutamate levels, which becomes defective in obesity. Positive or negative chemogenetic manipulation of PVN astrocyte Ca2+ signals, respectively, worsens or improves metabolic status of diet-induced obese mice. Collectively, these findings highlight a yet unappreciated role for astrocytes in the direct control of systemic metabolism and suggest potential targets for anti-obesity strategy.


Asunto(s)
Astrocitos , Hipotálamo , Animales , Astrocitos/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Ratones , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo
7.
Front Endocrinol (Lausanne) ; 12: 754522, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721302

RESUMEN

Using preproghrelin-deficient mice (Ghrl-/-), we previously observed that preproghrelin modulates pulsatile growth hormone (GH) secretion in post-pubertal male mice. However, the role of ghrelin and its derived peptides in the regulation of growth parameters or feeding in females is unknown. We measured pulsatile GH secretion, growth, metabolic parameters and feeding behavior in adult Ghrl-/- and Ghrl+/+ male and female mice. We also assessed GH release from pituitary explants and hypothalamic growth hormone-releasing hormone (GHRH) expression and immunoreactivity. Body weight and body fat mass, linear growth, spontaneous food intake and food intake following a 48-h fast, GH pituitary contents and GH release from pituitary explants ex vivo, fasting glucose and glucose tolerance were not different among adult Ghrl-/- and Ghrl+/+ male or female mice. In vivo, pulsatile GH secretion was decreased, while approximate entropy, that quantified orderliness of secretion, was increased in adult Ghrl-/- females only, defining more irregular GH pattern. The number of neurons immunoreactive for GHRH visualized in the hypothalamic arcuate nucleus was increased in adult Ghrl-/- females, as compared to Ghrl+/+ females, whereas the expression of GHRH was not different amongst groups. Thus, these results point to sex-specific effects of preproghrelin gene deletion on pulsatile GH secretion, but not feeding, growth or metabolic parameters, in adult mice.


Asunto(s)
Ghrelina/fisiología , Hormona del Crecimiento/metabolismo , Hipófisis/metabolismo , Caracteres Sexuales , Ritmo Ultradiano , Animales , Núcleo Arqueado del Hipotálamo/citología , Conducta Alimentaria , Femenino , Eliminación de Gen , Masculino , Ratones Endogámicos C57BL
8.
J Endocrinol ; 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582357

RESUMEN

The Growth Hormone Secretagogue Receptor (GHSR) mediates key properties of the gut hormone ghrelin on metabolism and behavior. Nevertheless, most recent observations also support that the GHSR is a constitutively active G protein-coupled receptor endowed of a sophisticated tuning involving a balance of endogenous ligands. Demonstrating the feasibility of shifting GHSR canonical signaling in vivo, we previously reported that a model with enhanced sensitivity to ghrelin (GhsrQ343X mutant rats) developed fat accumulation and glucose intolerance. Herein, we investigated the contribution of energy homeostasis to the onset of this phenotype, as well as behavioral responses to feeding or pharmacological challenges, by comparing GhsrM/M rats to wild-type littermate rats 1) as freely behaving animals and 2) in feeding and locomotor paradigms. Herein, GhsrM/M rats showed enhanced locomotor response to a GHSR agonist while locomotor or anorexigenic responses to amphetamine or cabergoline (dopamine receptor 2 agonist), respectively, were preserved. Ad libitum fed GhsrM/M rats consumed and conditioned for sucrose similarly to littermate control rats. In calorie-restricted conditions, GhsrM/M rats retained food anticipatory activity and maintained better their body weight and glycemia. Importantly, prior to fat accumulation, male GhsrM/M rats preferentially used carbohydrates as fuel substrate without alterations of energy intake, energy expenditure or physical activity and showed alterations of the GHSR system (i.e. enhanced ratio of GHSR hormones LEAP2:acyl-ghrelin and increased Ghsr expression in the hypothalamus). Overall, the present study provides proof of concept that shifted GHSR signaling can specifically alter nutrient partitioning resulting in modified balance of carbohydrate/lipid utilization.

9.
Aging (Albany NY) ; 11(17): 6638-6656, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31514171

RESUMEN

Dlx5 and Dlx6 encode two homeobox transcription factors expressed by developing and mature GABAergic interneurons. During development, Dlx5/6 play a role in the differentiation of certain GABAergic subclasses. Here we address the question of the functional role of Dlx5/6 in the mature central nervous system. First, we demonstrate that Dlx5 and Dlx6 are expressed by all subclasses of adult cortical GABAergic neurons. Then we analyze VgatΔDlx5-6 mice in which Dlx5 and Dlx6 are simultaneously inactivated in all GABAergic interneurons. VgatΔDlx5-6 mice present a behavioral pattern suggesting reduction of anxiety-like behavior and obsessive-compulsive activities, and a lower interest in nest building. Twenty-month-old VgatΔDlx5-6 animals have the same size as their normal littermates, but present a 25% body weight reduction associated with a marked decline in white and brown adipose tissue. Remarkably, both VgatΔDlx5-6/+ and VgatΔDlx5-6 mice present a 33% longer median survival. Hallmarks of biological aging such as motility, adiposity and coat conditions are improved in mutant animals. Our data imply that GABAergic interneurons can regulate healthspan and lifespan through Dlx5/6-dependent mechanisms. Understanding these regulations can be an entry point to unravel the processes through which the brain affects body homeostasis and, ultimately, longevity and healthy aging.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Envejecimiento Saludable/metabolismo , Proteínas de Homeodominio/metabolismo , Longevidad/fisiología , Animales , Conducta Animal/fisiología , Interneuronas/metabolismo , Ratones
10.
Nat Metab ; 1(2): 212-221, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-31245789

RESUMEN

In leptin-deficient ob/ob mice, obesity and diabetes are associated with abnormal development of neurocircuits in the hypothalamic arcuate nucleus (ARC)1, a critical brain area for energy and glucose homeostasis2,3. As this developmental defect can be remedied by systemic leptin administration, but only if given before postnatal day 28, a critical period (CP) for leptin-dependent development of ARC neurocircuits has been proposed4. In other brain areas, CP closure coincides with the appearance of perineuronal nets (PNNs), extracellular matrix specializations that restrict the plasticity of neurons that they enmesh5. Here we report that in humans as well as rodents, subsets of neurons in the mediobasal aspect of the ARC are enmeshed by PNN-like structures. In mice, these neurons are densely-packed into a continuous ring that encircles the junction of the ARC and median eminence, which facilitates exposure of ARC neurons to the circulation. Most of the enmeshed neurons are both GABAergic and leptin receptor-positive, including a majority of Agrp neurons. Postnatal formation of the PNN-like structures coincides precisely with closure of the CP for Agrp neuron maturation and is dependent on input from circulating leptin, as postnatal ob/ob mice have reduced ARC PNN-like material that is restored by leptin administration during the CP. We conclude that neurons crucial to metabolic homeostasis are enmeshed by PNN-like structures and organized into a densely packed cluster situated circumferentially at the ARC-ME junction, where metabolically-relevant humoral signals are sensed.


Asunto(s)
Núcleo Arqueado del Hipotálamo/citología , Red Nerviosa , Neuronas/citología , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Leptina/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Obesidad/genética , Obesidad/metabolismo
11.
Front Neurosci ; 11: 211, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473748

RESUMEN

Preproghrelin is a prohormone producing several preproghrelin-derived peptides with structural and functional heterogeneity: acyl ghrelin (AG), desacyl ghrelin (DAG), and obestatin. The absence of selective and reliable assays to measure these peptides simultaneously in biological samples has been a limitation to assess their real proportions in tissues and plasma in physiological and pathological conditions. We aimed at reliably measure the ratio between the different preproghrelin-derived peptides in murine tissues using selective immunoassays combined with a highly sensitive mass spectrometry method. AG-, DAG-, and obestatin-immunopositive fractions from the gastrointestinal tract of adult wild-type and ghrelin-deficient mice were processed for analysis by mass spectrometry (MS) with a Triple Quadrupole mass spectrometer. We found that DAG was predominant in mouse plasma, however it only represented 50% of total ghrelin (AG+DAG) production in the stomach and duodenum. Obestatin plasma levels accounted for about 30% of all circulating preproghrelin-derived peptides, however, it represented <1% of total preproghrelin-derived peptides production (AG+DAG+Obestatin) in the stomach. Assays were validated in ghrelin-deficient mice since neither ghrelin nor obestatin immunoreactivities were detected in their stomach, duodenum nor plasma. MS analyses confirmed that obestatin-immunoreactivity in stomach corresponded to the C-terminal amidated form of the peptide but not to des(1-10)-obestatin, nor to obestatin-Gly. In conclusion, specificity of ghrelin and obestatin immunoreactivities in gastrointestinal tissues using selective immunoassays was validated by MS. Obestatin was less abundant than AG or DAG in these tissues. Whether this is due to inefficient processing rate of preproghrelin into mature obestatin in gastrointestinal mouse tissues remains elusive.

12.
Mol Cell Endocrinol ; 438: 42-51, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27693419

RESUMEN

Among the gastrointestinal hormones that regulate food intake and energy homeostasis, ghrelin plays a unique role as the first one identified to increases appetite and stimulate GH secretion. This review highlights the latest mechanism by which ghrelin modulates body growth, appetite and energy metabolism by exploring pharmacological actions of the hormone and consequences of genetic or pharmacological blockade of the ghrelin/GHS-R (Growth Hormone Secretagogue Receptor) system on physiological responses in specific nutritional situations. Within the hypothalamus, novel mechanisms of action of this hormone involve its interaction with other ghrelin-derived peptides, such as desacyl ghrelin and obestatin, which are thought to act as functional ghrelin antagonists, and possible modulation of the GHS-R with other G-protein coupled receptors. During chronic undernutrition such as anorexia nervosa, variations of ghrelin-derived peptides may be an adaptative metabolic response to maintain normal glycemic control. Interestingly, some of ghrelin's metabolic actions are thought to be relayed through modulation of GH, an anabolic and hyperglycemic agent.


Asunto(s)
Apetito/efectos de los fármacos , Ghrelina/farmacología , Crecimiento y Desarrollo/efectos de los fármacos , Hipotálamo/metabolismo , Desnutrición/metabolismo , Estado Nutricional/efectos de los fármacos , Animales , Humanos , Hipotálamo/efectos de los fármacos
13.
Endocrinology ; 157(2): 666-78, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26587784

RESUMEN

Although most adults can lose weight by dieting, a well-characterized compensatory decrease in energy expenditure promotes weight regain more than 90% of the time. Using mice with impaired hypothalamic leptin signaling as a model of early-onset hyperphagia and obesity, we explored whether this unfavorable response to weight loss could be circumvented by early intervention. Early-onset obesity was associated with impairments in the structure and function of brown adipose tissue mitochondria, which were ameliorated by weight loss at any age. Although decreased sympathetic tone in weight-reduced adults resulted in net reductions in brown adipose tissue thermogenesis and energy expenditure that promoted rapid weight regain, this was not the case when dietary interventions were initiated at weaning. Enhanced energy expenditure persisted even after mice were allowed to resume overeating, leading to lasting reductions in adiposity. These findings reveal a time window when dietary interventions can produce metabolic improvements that are stably maintained.


Asunto(s)
Adiposidad , Crecimiento y Desarrollo/fisiología , Obesidad/metabolismo , Obesidad/prevención & control , Tejido Adiposo Pardo/metabolismo , Adiposidad/genética , Factores de Edad , Animales , Metabolismo Energético/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Receptores de Leptina/genética , Termogénesis/genética , Factores de Tiempo
14.
Tunis Med ; 93(8-9): 569-73, 2015.
Artículo en Francés | MEDLINE | ID: mdl-26815526

RESUMEN

BACKGROUND: The frequency of cystic fibrosis is unknown in Tunisia, regarding the limited number of reported surveys and patients. AIM: to determine the clinical characteristics, outcome and genetic data of cystic fibrosis in Tunisian pediatric patients. METHODS: Cases of cystic fibrosis managed at pediatric departments of Tunis, during 15 years (1997-2012), were reviewed. RESULTS: 33 children (23 males and 10 females) were enrolled. The Onset was within the first year of life in 26 patients. Revealing symptoms were the following: recurrent bronchopneumonia (28 cases), chronic diarrhea (17 cases), hepatomegaly (6 cases), malnutrition (15 cases), pseudo Bartter syndrome (3 cases), edemaanemia- hypoprotidemia (4 cases) and meconium ileus (4 cases). The diagnosis was confirmed by sweat test and genotypic data, the F508 del was the most frequent mutation (17 cases). Several complications had occurred during follow-up: chronic pseudomonas aeruginosa infection (15 cases), chronic respiratory failure (14 cases), recurrent hemoptysis (2 cases), pleural effusion (3 cases) and cirrhosis (2 cases). Ten patients died at a mean age of 7 years. One patient had pulmonary transplantation. Prenatal diagnosis was performed in 9 families. CONCLUSION: In Tunisia, cystic fibrosis is not exceptional, but its diagnosis is delayed. Our survey is characterized by more severe earliest forms, difficult and insufficient therapeutic management. A Better medical awareness and a national action plan are needed.


Asunto(s)
Fibrosis Quística/diagnóstico , Fibrosis Quística/complicaciones , Fibrosis Quística/epidemiología , Diagnóstico Tardío , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Estudios Retrospectivos , Túnez/epidemiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-25386163

RESUMEN

Psychiatric disorders are often associated with metabolic and hormonal alterations, including obesity, diabetes, metabolic syndrome as well as modifications in several biological rhythms including appetite, stress, sleep-wake cycles, and secretion of their corresponding endocrine regulators. Among the gastrointestinal hormones that regulate appetite and adapt the metabolism in response to nutritional, hedonic, and emotional dysfunctions, at the interface between endocrine, metabolic, and psychiatric disorders, ghrelin plays a unique role as the only one increasing appetite. The secretion of ghrelin is altered in several psychiatric disorders (anorexia, schizophrenia) as well as in metabolic disorders (obesity) and in animal models in response to emotional triggers (psychological stress …) but the relationship between these modifications and the physiopathology of psychiatric disorders remains unclear. Recently, a large literature showed that this key metabolic/endocrine regulator is involved in stress and reward-oriented behaviors and regulates anxiety and mood. In addition, preproghrelin is a complex prohormone but the roles of the other ghrelin-derived peptides, thought to act as functional ghrelin antagonists, are largely unknown. Altered ghrelin secretion and/or signaling in psychiatric diseases are thought to participate in altered appetite, hedonic response and reward. Whether this can contribute to the mechanism responsible for the development of the disease or can help to minimize some symptoms associated with these psychiatric disorders is discussed in the present review. We will thus describe (1) the biological actions of ghrelin and ghrelin-derived peptides on food and drugs reward, anxiety and depression, and the physiological consequences of ghrelin invalidation on these parameters, (2) how ghrelin and ghrelin-derived peptides are regulated in animal models of psychiatric diseases and in human psychiatric disorders in relation with the GH axis.

16.
Endocrinology ; 155(9): 3561-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24949662

RESUMEN

Ghrelin is a gut hormone processed from the proghrelin peptide acting as the endogenous ligand of the GH secretagogue receptor 1a. The regulatory role of endogenous ghrelin on pulsatile GH secretion and linear growth had to be established. The aim of the present study was to delineate the endogenous actions of preproghrelin on peripheral and central components of the GH axis. Accordingly, the ultradian pattern of GH secretion was measured in young and old preproghrelin-deficient males. Blood samples were collected by tail bleeding every 10 minutes over a period of 6 hours. Analysis of the GH pulsatile pattern by deconvolution showed that GH was secreted in an ultradian manner in all genotypes, with major secretory peaks occurring at about 3-hour intervals. In older mice, the peak number was reduced and secretion was less irregular compared with younger animals. Remarkably, in young Ghrl(-/-) mice, the amplitude of GH secretory bursts was significantly reduced. In older mice, however, genotype differences were less significant. Changes in GH pulsatility in young Ghrl(-/-) mice were associated with a tendency for reduced GH pituitary contents and plasma IGF-I concentrations, but with only a minor impact on linear growth. In Ghrl(+/-) mice, despite reduced Acyl ghrelin to des-acyl ghrelin ratio, GH secretion was not impaired. Ghrelin deficiency was not associated with a reduction in hypothalamic GHRH content or altered response to GHRH stimulation. Therefore, reduction in GHRH production and/or sensitivity do not primarily account for the altered GH pulsatile secretion of young Ghrl(-/-) mice. Instead, GHRH expression was elevated in young but not old Ghrl(-/-) mice, suggesting that differential compensatory responses resulting from the absence of endogenous ghrelin is occurring according to age. These results show that endogenous ghrelin is a regulator of GH pulse amplitude in growing mice but does not significantly modulate linear growth.


Asunto(s)
Ghrelina/deficiencia , Hormona del Crecimiento/metabolismo , Ratones/crecimiento & desarrollo , Ratones/metabolismo , Precursores de Proteínas/metabolismo , Animales , Ghrelina/genética , Masculino , Ratones/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Precursores de Proteínas/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-23515849

RESUMEN

The stimulatory effects of ghrelin, a 28-AA acylated peptide originally isolated from stomach, on growth hormone (GH) secretion and feeding are exclusively mediated through the growth hormone secretagogue 1a receptor (GHS-R1a), the only ghrelin receptor described so far. Several GHS-R1a agonists and antagonists have been developed to treat metabolic or nutritional disorders but their mechanisms of action in the central nervous system remain poorly understood. In the present study, we compared the activity of BIM-28163, a GHS-R1a antagonist, and of several agonists, including native ghrelin and the potent synthetic agonist, BIM-28131, to modulate food intake, GH secretion, and cFos activity in arcuate nucleus (ArcN), nucleus tractus solitarius (NTS), and area postrema (AP) in wild-type and NPY-GFP mice. BIM-28131 was as effective as ghrelin in stimulating GH secretion, but more active than ghrelin in inducing feeding. It stimulated cFos activity similarly to ghrelin in the NTS and AP but was more powerful in the ArcN, suggesting that the super-agonist activity of BIM-28131 is mostly mediated in the ArcN. BIM-28163 antagonized ghrelin-induced GH secretion but not ghrelin-induced food consumption and cFos activation, rather it stimulated food intake and cFos activity without affecting GH secretion. The level of cFos activation was dependent on the region considered: BIM-28163 was as active as ghrelin in the NTS, but less active in the ArcN and AP. All compounds also induced cFos immunoreactivity in ArcN NPY neurons but BIM-28131 was the most active. In conclusion, these data demonstrate that two peptide analogs of ghrelin, BIM-28163, and BIM-28131, are powerful stimulators of appetite in mice, acting through pathways and key brain regions involved in the control of appetite that are only partially superimposable from those activated by ghrelin. A better understanding of the molecular pathways activated by these compounds could be useful in devising future therapeutic applications, such as for cachexia and anorexia.

18.
PLoS One ; 7(12): e51135, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251435

RESUMEN

BACKGROUND: Ghrelin and obestatin are two gut-derived peptides originating from the same ghrelin/obestatin prepropeptide gene (GHRL). While ghrelin stimulates growth hormone (GH) secretion and food intake and inhibits γ-aminobutyric-acid synaptic transmission onto GHRH (Growth Hormone Releasing Hormone) neurons, obestatin blocks these effects. In Humans, GHRL gene polymorphisms have been associated with pathologies linked to an unbalanced energy homeostasis. We hypothesized that one polymorphism located in the obestatin sequence (Q to L substitution in position 90 of the ghrelin/obestatin prepropeptide, rs4684677) may impact on the function of obestatin. In the present study, we tested the activity of native and Q90L obestatin to modulate ghrelin-induced food intake, GH secretion, cFos activity in GHRH and Neuropeptide Y (NPY) neurons and γ-aminobutyric-acid activity onto GHRH neurons. METHODOLOGY/PRINCIPAL FINDINGS: Food intake, GH secretion and electrophysiological recordings were assessed in C57BL/6 mice. cFos activity was measured in NPY-Renilla-GFP and GHRH-eGFP mice. Mice received saline, ghrelin or ghrelin combined to native or Q90L obestatin (30 nmol each) in the early light phase. Ghrelin stimulation of food intake and GH secretion varied considerably among individual mice with 59-77% eliciting a robust response. In these high-responders, ghrelin-induced food intake and GH secretion were reduced equally by native and Q90L obestatin. In contrast to in vivo observations, Q90L was slightly more efficient than native obestatin in inhibiting ghrelin-induced cFos activation within the hypothalamic arcuate nucleus and the nucleus tractus solitarius of the brainstem. After ghrelin injection, 26% of NPY neurons in the arcuate nucleus expressed cFos protein and this number was significantly reduced by co-administration of Q90L obestatin. Q90L was also more potent that native obestatin in reducing ghrelin-induced inhibition of γ-aminobutyric-acid synaptic transmission onto GHRH neurons. CONCLUSIONS/SIGNIFICANCE: These data support the hypothesis that Q90L obestatin partially blocks ghrelin-induced food intake and GH secretion by acting through NPY and GHRH neurons.


Asunto(s)
Conducta Alimentaria/fisiología , Ghrelina/antagonistas & inhibidores , Ghrelina/fisiología , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/antagonistas & inhibidores , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Animales , Hormona del Crecimiento/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL
19.
Mol Cell Biol ; 32(19): 4001-11, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22851690

RESUMEN

Signaling downstream of mechanistic target of rapamycin complexes 1 and 2 (mTORC1 and mTORC2) controls specific and distinct aspects of insulin action and nutrient homeostasis in an interconnected and as yet unclear way. Mice lacking the mTORC1 substrate S6 kinase 1 (S6K1) maintain proper glycemic control with a high-fat diet. This phenotype is accompanied by insulin hypersensitivity, Akt- and AMP-activated kinase upregulation, and increased lipolysis in adipose tissue and skeletal muscle. Here, we show that, when S6K1 inactivation is combined with the deletion of the mTORC2 substrate Akt2, glucose homeostasis is compromised due to defects in both insulin action and ß-cell function. After a high-fat diet, the S6K1(-/-) Akt2(-/-) double-mutant mice do not become obese, though they are severely hyperglycemic. Our data demonstrate that S6K1 is required for pancreatic ß-cell growth and function during adaptation to insulin resistance states. Strikingly, the inactivation of two targets of mTOR and phosphatidylinositol 3-kinase signaling is sufficient to reproduce major hallmarks of type 2 diabetes.


Asunto(s)
Dieta Alta en Grasa , Eliminación de Gen , Glucosa/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Animales , Proliferación Celular , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Aumento de Peso
20.
Peptides ; 32(11): 2274-82, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21530598

RESUMEN

Among the factors playing a crucial role in the regulation of energy metabolism, gastro-intestinal peptides are essential signals to maintain energy homeostasis as they relay to the central nervous system the informations about the nutritional status of the body. Among these factors, preproghrelin is a unique prohormone as it encodes ghrelin, a powerful GH secretagogue and the only orexigenic signal from the gastrointestinal tract and obestatin, a proposed functional ghrelin antagonist. These preproghrelin-derived peptides may contribute to balance energy intake, metabolism and body composition by regulating the activity of the GH/IGF-1 axis and appetite. Whereas the contribution of ghrelin has been well characterized, the role of the more recently identified obestatin, in this regulatory process is still controversial. In this chapter, we describe the contribution of these different preproghrelin-derived peptides and their receptors in the regulation of GH secretion and feeding. Data obtained from pharmacological approaches, mutant models and evaluation of the hormones in animal and human models are discussed.


Asunto(s)
Regulación del Apetito/fisiología , Ghrelina/metabolismo , Hormona del Crecimiento/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Ghrelina/metabolismo , Transducción de Señal , Animales , Composición Corporal , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Ayuno/efectos adversos , Conducta Alimentaria/fisiología , Mucosa Gástrica/metabolismo , Expresión Génica , Ghrelina/genética , Hormona del Crecimiento/genética , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Noqueados , Precursores de Proteínas/química , Precursores de Proteínas/genética , Receptores de Ghrelina/antagonistas & inhibidores , Receptores de Ghrelina/genética , Sustancia P/análogos & derivados , Sustancia P/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...