Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 107(5): 051301, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21867059

RESUMEN

We report results of a search for light (≲10 GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections σ(n)>7×10(-42) cm(2), for a dark matter particle mass m(χ)=7 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.


Asunto(s)
Radiación Cósmica , Interpretación Estadística de Datos , Electrones , Física Nuclear , Humanos , Luz , Fotones , Dispersión de Radiación
2.
Phys Rev Lett ; 101(9): 091301, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18851599

RESUMEN

XENON10 is an experiment to directly detect weakly interacting massive particles (WIMPs), which may comprise the bulk of the nonbaryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129Xe and 131Xe from 58.6 live days of operation at the Laboratori Nazionali del Gran Sasso. Based on the nonobservation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of approximately 10 GeV/c2-2 TeV/c2 as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.

3.
Phys Rev Lett ; 100(2): 021303, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18232850

RESUMEN

The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon to discriminate signal from background down to 4.5 keV nuclear-recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006, and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross section of 8.8x10(-44) cm2 for a WIMP mass of 100 GeV/c2, and 4.5x10(-44) cm2 for a WIMP mass of 30 GeV/c2. This result further constrains predictions of supersymmetric models.

4.
Phys Rev Lett ; 99(9): 092301, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17930999

RESUMEN

We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely polarized 3 GeV electrons from unpolarized protons at Q2=0.15, 0.25 (GeV/c)2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A(n) provides a direct probe of the imaginary component of the 2gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

5.
Phys Rev Lett ; 95(9): 092001, 2005 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-16197209

RESUMEN

We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < or =Q2 < or =1.0 GeV2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange-quark contributions to the currents of the proton. The measurements were made at Jefferson Laboratory using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate nonzero, Q2 dependent, strange-quark contributions and provide new information beyond that obtained in previous experiments.

6.
Phys Rev Lett ; 92(10): 102003, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-15089200

RESUMEN

We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2=0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51+/-0.57 (stat)+/-0.58 (syst) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.

7.
Phys Rev Lett ; 84(6): 1106-9, 2000 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-11017455

RESUMEN

We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A = -4.92+/-0.61+/-0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections.

8.
Science ; 290(5499): 2117-9, 2000 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11118140

RESUMEN

The violation of mirror symmetry in the weak force provides a powerful tool to study the internal structure of the proton. Experimental results have been obtained that address the role of strange quarks in generating nuclear magnetism. The measurement reported here provides an unambiguous constraint on strange quark contributions to the proton's magnetic moment through the electron-proton weak interaction. We also report evidence for the existence of a parity-violating electromagnetic effect known as the anapole moment of the proton. The proton's anapole moment is not yet well understood theoretically, but it could have important implications for precision weak interaction studies in atomic systems such as cesium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...