Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2833, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595757

RESUMEN

The CRISPR-Cas type V-I is a family of Cas12i-containing programmable nuclease systems guided by a short crRNA without requirement for a tracrRNA. Here we present an engineered Type V-I CRISPR system (Cas12i), ABR-001, which utilizes a tracr-less guide RNA. The compact Cas12i effector is capable of self-processing pre-crRNA and cleaving dsDNA targets, which facilitates versatile delivery options and multiplexing, respectively. We apply an unbiased mutational scanning approach to enhance initially low editing activity of Cas12i2. The engineered variant, ABR-001, exhibits broad genome editing capability in human cell lines, primary T cells, and CD34+ hematopoietic stem and progenitor cells, with both robust efficiency and high specificity. In addition, ABR-001 achieves a high level of genome editing when delivered via AAV vector to HEK293T cells. This work establishes ABR-001 as a versatile, specific, and high-performance platform for ex vivo and in vivo gene therapy.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Edición Génica/métodos , Células HEK293 , Humanos , ARN/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
2.
PLoS One ; 16(11): e0252848, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34731163

RESUMEN

Although many long non-coding RNAs (lncRNAs) exhibit lineage-specific expression, the vast majority remain functionally uncharacterized in the context of development. Here, we report the first described human embryonic stem cell (hESC) lines to repress (CRISPRi) or activate (CRISPRa) transcription during differentiation into all three germ layers, facilitating the modulation of lncRNA expression during early development. We performed an unbiased, genome-wide CRISPRi screen targeting thousands of lncRNA loci expressed during endoderm differentiation. While dozens of lncRNA loci were required for proper differentiation, most differentially expressed lncRNAs were not, supporting the necessity for functional screening instead of relying solely on gene expression analyses. In parallel, we developed a clustering approach to infer mechanisms of action of lncRNA hits based on a variety of genomic features. We subsequently identified and validated FOXD3-AS1 as a functional lncRNA essential for pluripotency and differentiation. Taken together, the cell lines and methodology described herein can be adapted to discover and characterize novel regulators of differentiation into any lineage.


Asunto(s)
Diferenciación Celular/genética , Sistemas CRISPR-Cas , Factores de Transcripción Forkhead/genética , Humanos , Interferencia de ARN , ARN Largo no Codificante
3.
Hum Mol Genet ; 30(23): 2263-2271, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34240140

RESUMEN

SWitch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes are key epigenetic regulators that are recurrently mutated in cancer. Most studies of these complexes are focused on their role in regulating protein-coding genes. However, here, we show that SWI/SNF complexes control the expression of microRNAs. We used a SMARCA4-deficient model of lung adenocarcinoma (LUAD) to track changes in the miRNome upon SMARCA4 restoration. We found that SMARCA4-SWI/SNF complexes induced significant changes in the expression of cancer-related microRNAs. The most significantly dysregulated microRNA was miR-222, whose expression was promoted by SMARCA4-SWI/SNF complexes, but not by SMARCA2-SWI/SNF complexes via their direct binding to a miR-222 enhancer region. Importantly, miR-222 expression decreased cell viability, phenocopying the tumor suppressor role of SMARCA4-SWI/SNF complexes in LUAD. Finally, we showed that the miR-222 enhancer region resides in a topologically associating domain that does not contain any cancer-related protein-coding genes, suggesting that miR-222 may be involved in exerting the tumor suppressor role of SMARCA4. Overall, this study highlights the relevant role of the SWI/SNF complex in regulating the non-coding genome, opening new insights into the pathogenesis of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Genes Supresores de Tumor , MicroARNs/genética , Factores de Transcripción/metabolismo , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Biológicos
4.
Cell Cycle ; 19(18): 2314-2326, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32816599

RESUMEN

TRIM71 is an important RNA-binding protein in development and disease, yet its direct targets have not been investigated globally. Here we describe a number of disease and developmentally-relevant TRIM71 RNA targets such as the MBNL family, LIN28B, MDM2, and TCF7L2. We describe a new role for TRIM71 as capable of positive or negative RNA regulation depending on the RNA target. We found that TRIM71 co-precipitated with IMP1 which could explain its multiple mechanisms of RNA regulation, as IMP1 is typically thought to stabilize RNAs. Deletion of the NHL domain of TRIM71 impacted its ability to bind to RNA and RNAs bound by congenital hydrocephalus-associated point mutations in the RNA-binding NHL domain of TRIM71 clustered closely with RNAs bound by the NHL deletion mutant. Our work expands the possible mechanisms by which TRIM71 may regulate RNAs and elucidates further potential RNA targets.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , ARN Neoplásico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Proliferación Celular , Senescencia Celular , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Mutación Puntual , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad del ARN , ARN Neoplásico/genética , Proteínas de Unión al ARN/genética , Eliminación de Secuencia , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética
6.
Nat Commun ; 10(1): 1881, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015438

RESUMEN

Bromodomain-containing protein 9 (BRD9) is a recently identified subunit of SWI/SNF(BAF) chromatin remodeling complexes, yet its function is poorly understood. Here, using a genome-wide CRISPR-Cas9 screen, we show that BRD9 is a specific vulnerability in pediatric malignant rhabdoid tumors (RTs), which are driven by inactivation of the SMARCB1 subunit of SWI/SNF. We find that BRD9 exists in a unique SWI/SNF sub-complex that lacks SMARCB1, which has been considered a core subunit. While SMARCB1-containing SWI/SNF complexes are bound preferentially at enhancers, we show that BRD9-containing complexes exist at both promoters and enhancers. Mechanistically, we show that SMARCB1 loss causes increased BRD9 incorporation into SWI/SNF thus providing insight into BRD9 vulnerability in RTs. Underlying the dependency, while its bromodomain is dispensable, the DUF3512 domain of BRD9 is essential for SWI/SNF integrity in the absence of SMARCB1. Collectively, our results reveal a BRD9-containing SWI/SNF subcomplex is required for the survival of SMARCB1-mutant RTs.


Asunto(s)
Ensamble y Desensamble de Cromatina , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Factores de Transcripción/metabolismo , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Humanos , Mutación , Regiones Promotoras Genéticas/genética , Dominios Proteicos/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Tumor Rabdoide/patología , Proteína SMARCB1/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
7.
RNA ; 25(3): 352-363, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30538148

RESUMEN

The accurate inheritance of genetic material is a basic necessity in all domains of life and an unexpectedly large number of RNA processing factors are required for mitotic progression and genome stability. NRDE2 (nuclear RNAi defective-2) is an evolutionarily conserved protein originally discovered for its role in nuclear RNA interference (RNAi) and heritable gene silencing in Caenorhabditis elegans (C. elegans). The function of the human NRDE2 gene remains poorly understood. Here we show that human NRDE2 is an essential protein required for suppressing intron retention in a subset of pre-mRNAs containing short, GC-rich introns with relatively weak 5' and 3' splice sites. NRDE2 preferentially interacts with components of the U5 small nuclear ribonucleoprotein (snRNP), the exon junction complex, and the RNA exosome. Interestingly, NRDE2-depleted cells exhibit greatly increased levels of genomic instability and DNA damage, as well as defects in centrosome maturation and mitotic progression. We identify the essential centriolar satellite protein, CEP131, as a direct NRDE2-regulated target. NRDE2 specifically binds to and promotes the efficient splicing of CEP131 pre-mRNA, and depleting NRDE2 dramatically reduces CEP131 protein expression, contributing to impaired recruitment of critical centrosomal proteins (e.g., γ-tubulin and Aurora Kinase A) to the spindle poles during mitosis. Our work establishes a conserved role for human NRDE2 in RNA splicing, characterizes the severe genomic instability phenotypes observed upon loss of NRDE2, and highlights the direct regulation of CEP131 splicing as one of multiple mechanisms through which such phenotypes might be explained.


Asunto(s)
Factores de Empalme de ARN/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Línea Celular , Regulación de la Expresión Génica , Humanos , Intrones , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Interferente Pequeño/genética
8.
Nat Commun ; 8: 14648, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262751

RESUMEN

Genes encoding subunits of SWI/SNF (BAF) chromatin remodelling complexes are collectively altered in over 20% of human malignancies, but the mechanisms by which these complexes alter chromatin to modulate transcription and cell fate are poorly understood. Utilizing mouse embryonic fibroblast and cancer cell line models, here we show via ChIP-seq and biochemical assays that SWI/SNF complexes are preferentially targeted to distal lineage specific enhancers and interact with p300 to modulate histone H3 lysine 27 acetylation. We identify a greater requirement for SWI/SNF at typical enhancers than at most super-enhancers and at enhancers in untranscribed regions than in transcribed regions. Our data further demonstrate that SWI/SNF-dependent distal enhancers are essential for controlling expression of genes linked to developmental processes. Our findings thus establish SWI/SNF complexes as regulators of the enhancer landscape and provide insight into the roles of SWI/SNF in cellular fate control.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Elementos de Facilitación Genéticos , Factores de Transcripción/metabolismo , Acetilación , Animales , Línea Celular Tumoral , Células Cultivadas , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Ratones Noqueados , Ratones Transgénicos , Unión Proteica , Factores de Transcripción/genética
9.
Nat Genet ; 49(2): 289-295, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27941797

RESUMEN

SMARCB1 (also known as SNF5, INI1, and BAF47), a core subunit of the SWI/SNF (BAF) chromatin-remodeling complex, is inactivated in nearly all pediatric rhabdoid tumors. These aggressive cancers are among the most genomically stable, suggesting an epigenetic mechanism by which SMARCB1 loss drives transformation. Here we show that, despite having indistinguishable mutational landscapes, human rhabdoid tumors exhibit distinct enhancer H3K27ac signatures, which identify remnants of differentiation programs. We show that SMARCB1 is required for the integrity of SWI/SNF complexes and that its loss alters enhancer targeting-markedly impairing SWI/SNF binding to typical enhancers, particularly those required for differentiation, while maintaining SWI/SNF binding at super-enhancers. We show that these retained super-enhancers are essential for rhabdoid tumor survival, including some that are shared by all subtypes, such as SPRY1, and other lineage-specific super-enhancers, such as SOX2 in brain-derived rhabdoid tumors. Taken together, our findings identify a new chromatin-based epigenetic mechanism underlying the tumor-suppressive activity of SMARCB1.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Elementos de Facilitación Genéticos/genética , Proteína SMARCB1/genética , Línea Celular Tumoral , Cromatina/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética/genética , Humanos , Mutación/genética , Proteínas Nucleares/genética , Tumor Rabdoide/genética
10.
Nat Med ; 21(12): 1491-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26552009

RESUMEN

Human cancer genome sequencing has recently revealed that genes that encode subunits of SWI/SNF chromatin remodeling complexes are frequently mutated across a wide variety of cancers, and several subunits of the complex have been shown to have bona fide tumor suppressor activity. However, whether mutations in SWI/SNF subunits result in shared dependencies is unknown. Here we show that EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is essential in all tested cancer cell lines and xenografts harboring mutations of the SWI/SNF subunits ARID1A, PBRM1, and SMARCA4, which are several of the most frequently mutated SWI/SNF subunits in human cancer, but that co-occurrence of a Ras pathway mutation is correlated with abrogation of this dependence. Notably, we demonstrate that SWI/SNF-mutant cancer cells are primarily dependent on a non-catalytic role of EZH2 in the stabilization of the PRC2 complex, and that they are only partially dependent on EZH2 histone methyltransferase activity. These results not only reveal a shared dependency of cancers with genetic alterations in SWI/SNF subunits, but also suggest that EZH2 enzymatic inhibitors now in clinical development may not fully suppress the oncogenic activity of EZH2.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Mutación/genética , Neoplasias/genética , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción/genética , Acetilación/efectos de los fármacos , Animales , Catálisis/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2 , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Indoles/farmacología , Metilación/efectos de los fármacos , Ratones Desnudos , Fosforilación/efectos de los fármacos , Piridonas/farmacología , ARN Interferente Pequeño/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Nat Med ; 20(3): 251-4, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24562383

RESUMEN

Recent studies have revealed that ARID1A, encoding AT-rich interactive domain 1A (SWI-like), is frequently mutated across a variety of human cancers and also has bona fide tumor suppressor properties. Consequently, identification of vulnerabilities conferred by ARID1A mutation would have major relevance for human cancer. Here, using a broad screening approach, we identify ARID1B, an ARID1A homolog whose gene product is mutually exclusive with ARID1A in SWI/SNF complexes, as the number 1 gene preferentially required for the survival of ARID1A-mutant cancer cell lines. We show that loss of ARID1B in ARID1A-deficient backgrounds destabilizes SWI/SNF and impairs proliferation in both cancer cells and primary cells. We also find that ARID1A and ARID1B are frequently co-mutated in cancer but that ARID1A-deficient cancers retain at least one functional ARID1B allele. These results suggest that loss of ARID1A and ARID1B alleles cooperatively promotes cancer formation but also results in a unique functional dependence. The results further identify ARID1B as a potential therapeutic target for ARID1A-mutant cancers.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Mutación , Neoplasias/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Alelos , Animales , Línea Celular , Núcleo Celular/metabolismo , Proliferación Celular , Cromatina/metabolismo , Reacciones Falso Positivas , Fibroblastos/citología , Fibroblastos/metabolismo , Silenciador del Gen , Células HEK293 , Humanos , Ratones , ARN Interferente Pequeño/metabolismo , Factores de Tiempo
12.
Clin Cancer Res ; 20(1): 21-7, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24122795

RESUMEN

SWI/SNF chromatin remodeling complexes are pleomorphic multisubunit cellular machines that utilize the energy of ATP hydrolysis to modulate chromatin structure. The complexes interact with transcription factors at promoters and enhancers to modulate gene expression and contribute to lineage specification, differentiation, and development. Initial clues to a role in tumor suppression for SWI/SNF complexes came over a decade ago when the gene encoding the SMARCB1/SNF5 core subunit was found specifically inactivated in nearly all pediatric rhabdoid tumors. In the last three years, cancer-genome sequencing efforts have revealed an unexpectedly high mutation rate of SWI/SNF subunit genes, which are collectively mutated in 20% of all human cancers and approach the frequency of p53 mutations. Here, we provide a background on these newly recognized tumor suppressor complexes, discuss mechanisms implicated in the tumor suppressor activity, and highlight findings that may lead to potential therapeutic targets for SWI/SNF-mutant cancers.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Neoplasias/genética , Factores de Transcripción/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias/tratamiento farmacológico , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
J Bacteriol ; 195(1): 126-34, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23104811

RESUMEN

Streptococcus mutans is a commensal member of the healthy plaque biofilm and the primary causative agent of dental caries. The present study is an investigation of SloR, a 25-kDa metalloregulatory protein that modulates genes responsible for S. mutans-induced cariogenesis. Previous studies of SloR homologues in other bacterial pathogens have identified three domains critical to repressor functionality: an N-terminal DNA-binding domain, a central dimerization domain, and a C-terminal FeoA (previously SH3-like) domain. We used site-directed mutagenesis to identify critical amino acid residues within each of these domains of the SloR protein. Select residues were targeted for mutagenesis, and nonconservative amino acid substitutions were introduced by overlap extension PCR. Furthermore, three C-terminally truncated SloR variants were generated using conventional PCR. The repressor functionality and DNA-binding ability of each variant was assessed using CAT reporter gene assays, real-time semiquantitative reverse transcriptase (qRT)-PCR, and electrophoretic mobility shift assays. We identified 12 residues within SloR that cause significant derepression of sloABC promoter activity (P < 0.05) compared to the results for wild-type SloR. Derepression was particularly noteworthy in metal ion-binding site 1 mutants, consistent with the site's importance in gene repression by SloR. In addition, a hyperactive SloR(E169A/Q170A) mutant was identified as having significantly heightened repression of sloABC promoter activity, and experiments with C-terminal deletion mutants support involvement of the FeoA domain in SloR-mediated gene repression. Given these results, we describe the functional domains of the S. mutans SloR protein and propose that the hyperactive mutant could serve as a target for rational drug design aimed at repressing SloR-mediated virulence gene expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Manganeso/metabolismo , Streptococcus mutans/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dicroismo Circular , ADN Bacteriano , Ensayo de Cambio de Movilidad Electroforética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Streptococcus mutans/genética , Streptococcus mutans/patogenicidad , Relación Estructura-Actividad , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA