Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(44): 51079-51088, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37879041

RESUMEN

The accurate positioning of metal-organic frameworks (MOFs) on the surface of other materials has opened up new possibilities for the development of multifunctional devices. We propose here a postfunctionalization approach for three-dimensional (3D)-printed metallic catalytic flow reactors based on MOFs. The Cu-based reactors were immersed into an acid solution containing an organic linker for the synthesis of MOFs, where Cu2+ ions dissolved in situ were assembled to form MOF crystals on the surface of the reactor. The resultant MOF layer served as a promising interface that enabled the deposition of catalytically active metal nanoparticles (NPs). It also acted as an efficient platform to provide carbonous layers via simple pyrolysis under inert gas conditions, which further enabled functionalization with organic modifiers and metal NPs. Cylindrical-shaped catalytic flow reactors with four different cell densities were used to investigate the effect of the structure of the reactors on the catalytic production of H2 from a liquid-phase hydrogen storage material. The activity increased with an increasing internal surface area but decreased in the reactor with the smallest cell size despite its high internal surface area. The results of fluid dynamics studies indicated that the effect of pressure loss becomes more pronounced as the pore size decreases.

2.
Sci Rep ; 8(1): 9651, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29941897

RESUMEN

The electron-doped SrTiO3 exhibits good thermoelectric properties, which makes this material a promising candidate of an n-type oxide thermoelectric device. Recent studies indicated that only a few percent co-doping of La and Mn in SrTiO3 substantially reduces the thermal conductivity, thereby greatly improving the thermoelectric figure of merit at room temperature. Our time-of-flight neutron scattering studies revealed that by doping both La and Mn into SrTiO3, the inelastic scattering spectrum shows a momentum-independent increase in the low-energy spectral weight approximately below 10 meV. The increase in the low-energy spectral weight exhibits a clear correlation with thermal conductivity. The correlation is attributed to dynamical and local structural fluctuations caused by the Jahn-Teller instability in Mn3+ ions coupled with the incipient ferroelectric nature of SrTiO3, as the origin of the low thermal conductivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA