Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Circ Res ; 101(8): 830-8, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17704208

RESUMEN

An essential cofactor for the endothelial NO synthase is tetrahydrobiopterin (H4B). In the present study, we show that in human endothelial cells, laminar shear stress dramatically increases H4B levels and enzymatic activity of GTP cyclohydrolase (GTPCH)-1, the first step of H4B biosynthesis. In contrast, protein levels of GTPCH-1 were not affected by shear. Shear did not change protein expression or activity of the downstream enzymes 6-pyruvoyl-tetrahydropterin synthase and sepiapterin reductase and decreased protein levels of the salvage enzyme dihydrofolate reductase. Oscillatory shear only modestly affected H4B levels and GPTCH-1 activity. We also demonstrate that laminar, but not oscillatory shear stress, stimulates phosphorylation of GTPCH-1 on serine 81 and that this is mediated by the alpha prime (alpha') subunit of casein kinase 2. The increase in H4B caused by shear is essential in allowing proper function of endothelial NO synthase because GPTCH-1 blockade with 2,4-diamino-6-hydroxypyrimidine during shear inhibited dimer formation of endothelial NO synthase, increased endothelial cell superoxide production, and prevented the increase in NO production caused by shear. Thus, shear stress not only increases endothelial NO synthase levels but also stimulates production of H4B by markedly enhancing GTPCH-1 activity via casein kinase 2-dependent phosphorylation on serine 81. These findings illustrate a new function of casein kinase 2 in the endothelium and provide insight into regulation of GTPCH-1 activity.


Asunto(s)
Biopterinas/análogos & derivados , Estrés Fisiológico , Biopterinas/biosíntesis , Biopterinas/genética , Células Cultivadas , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , GTP Ciclohidrolasa/biosíntesis , GTP Ciclohidrolasa/genética , Humanos , Mecanotransducción Celular/fisiología
2.
Free Radic Biol Med ; 40(11): 2056-68, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16716906

RESUMEN

Tetrahydrobiopterin (BH4) and heat shock protein 90 (hsp90) have been anticipated to regulate endothelial nitric oxide synthase (eNOS)-dependent superoxide anion radical (O2*-) generation in endothelial cells. It is not known, however, whether hsp90 and BH4 increase O2*- in a synergistic manner, or whether this increase is a consequence of downstream changes in eNOS phosphorylation on serine 1179 (eNOS-S1179) and changes in dimer/monomer distribution. Here O2*- production from purified BH4 -free eNOS and eNOS:hsp90 complexes determined by spin-trapping methodology showed that hsp90 neither inhibits O2*- nor alters the requirement of BH4 to inhibit radical release from eNOS. In endothelial cells, O2*- detection with the novel high-performance liquid chromatography assay of 2-hydroxyethidium showed that inhibition of hsp90 did not increase O2*-, while a significant increase in O2*- was detected in BH4 -depleted cells. Radicicol, a hsp90 inhibitor, disrupted eNOS:hsp90 association, decreased eNOS-S1179, but increased biopterin production in a dose-dependent fashion. These changes were followed by an increase in eNOS activity, demonstrating that high biopterin levels offset inhibition of eNOS phosphorylation and diminished interaction with hsp90. In contrast, depletion of biopterin did not affect hsp90 levels or interaction with eNOS or eNOS dimer/monomer ratio in bovine aorta endothelial cells (BAECs). We conclude that low BH4 but not inhibition of hsp90 increases O2*- in BAECs by mechanism(s) that unlikely involve phosphorylation to eNOS-S1179 or eNOS monomerization.


Asunto(s)
Endotelio Vascular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Serina/metabolismo , Superóxidos/metabolismo , Animales , Biopterinas/metabolismo , Western Blotting , Bovinos , Células Cultivadas , Dimerización , Endotelio Vascular/citología , Endotelio Vascular/enzimología , Proteínas HSP90 de Choque Térmico/metabolismo , Inmunoprecipitación , NADP/metabolismo , Óxido Nítrico Sintasa de Tipo III/química , Fosforilación
3.
Free Radic Biol Med ; 38(4): 481-91, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15649650

RESUMEN

Alterations in tetrahydrobiopterin (BH4) levels have significant consequences in vascular pathophysiology. However, the mechanisms regulating BH4 remain poorly understood. The activity of GTP cyclohydrolase I (GTPCH-I), the first enzyme in BH4 biosynthesis, is controlled by protein levels, posttranslational modifications and interaction with GTPCH-I feedback regulatory protein (GFRP). This work examined the correlation between GTPCH-I protein levels and activity and changes in BH4 in human endothelial cells (HAECs) and adult rat cardiomyocytes (ARCM). Changes in BH4 were stimulated with LPS in HAECs and ARCM, and with hydrogen peroxide in HAECs only. Biopterin production by HAECs and ARCM were attained with concentrations of LPS >>1 microg/ml and responses were nonlinear with respect to LPS concentrations. Western blot analysis demonstrated that induction of biopterin synthesis in HAECs and ARCM by LPS does not entail augmentation of constitutive GTPCH-I protein levels. However, LPS diminished GFRP mRNA, suggesting that disruption of GTPCH-I:GFRP complex enhances de novo biopterin synthesis. Conversely, treatment with hydrogen peroxide increased GTPCH-I and GFRP mRNA levels in HAECs while depleting BH4 and GSH, which was counteracted by catalase. This indicates that GFRP may override increases in GTPCH-I protein inhibiting enzyme activity. This conclusion is further supported by depletion of biopterin in cells transiently transfected with GFRP. Thus, allosteric regulation of GTPCH-I activity in the cardiovascular system maybe an important mechanism regulating BH4 levels through GFRP signaling.


Asunto(s)
Biopterinas/análogos & derivados , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/farmacología , Lipopolisacáridos/farmacología , Miocitos Cardíacos/metabolismo , Proteínas/metabolismo , Envejecimiento/fisiología , Animales , Biopterinas/metabolismo , Células Cultivadas , Chlorocebus aethiops , Células Endoteliales/efectos de los fármacos , GTP Ciclohidrolasa/metabolismo , Glucosa Oxidasa/genética , Glucosa Oxidasa/metabolismo , Corazón/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Miocitos Cardíacos/efectos de los fármacos , Proteínas/genética , ARN Mensajero/genética , Ratas
4.
Circ Res ; 96(2): 164-71, 2005 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-15604419

RESUMEN

Endothelial production of nitric oxide (NO) is dependent on adequate cellular levels of tetrahydrobiopterin (BH4), an important cofactor for the nitric oxide synthases. Vascular diseases are often characterized by vessel wall inflammation and cytokine treatment of endothelial cells increases BH4 levels, in part through the induction of GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme for BH4 biosynthesis. However, the molecular mechanisms of cytokine-mediated GTPCH I induction in the endothelium are not entirely clear. We sought to investigate the signaling pathways whereby cytokines induce GTPCH I expression in human umbilical vein endothelial cells (HUVECs). Interferon-gamma (IFN-gamma) induced endothelial cell GTPCH I protein and BH4 modestly, whereas high-level induction required combinations of IFN-gamma and tumor necrosis factor-alpha (TNF-alpha). In the presence of IFN-gamma, TNF-alpha increased GTPCH I mRNA in a manner dependent on nuclear factor-kappaB (NF-kappaB), as this effect was abrogated by overexpression of a dominant-negative IkappaB construct. HUVEC IFN-gamma treatment resulted in signal transducer and activator of transcription 1 (Stat1) activation and DNA binding in a Jak2-dependent manner, as this was inhibited by AG490. Conversely, overexpression of Jak2 effectively substituted for IFN-gamma in supporting TNF-alpha-mediated GTPCH I induction. The role of IFN-gamma was also Stat1-dependent as Stat1-null cells exhibited no GTPCH I induction in response to cytokines. However, Stat1 activation with oncostatin M failed to support TNF-alpha-mediated GTPCH I induction because of concomitant Stat3 activation. Consistent with this notion, siRNA-mediated Stat3 gene silencing allowed oncostatin M to substitute for IFN-gamma in this system. These data implicate both NF-kappaB and Stat1 in endothelial cell cytokine-stimulated GTPCH I induction and highlight the role of Stat3 in modulating Stat1-supported gene transcription. Thus, IFN-gamma and TNF-alpha exert distinct but cooperative roles for BH4 biosynthesis in endothelium that may have important implications for vascular function during vascular inflammation.


Asunto(s)
Biopterinas/análogos & derivados , Biopterinas/biosíntesis , Células Endoteliales/metabolismo , Endotelio Vascular/citología , GTP Ciclohidrolasa/fisiología , Animales , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/fisiología , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/metabolismo , Inducción Enzimática/efectos de los fármacos , GTP Ciclohidrolasa/antagonistas & inhibidores , GTP Ciclohidrolasa/biosíntesis , GTP Ciclohidrolasa/genética , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Proteínas I-kappa B/farmacología , Interferón gamma/farmacología , Interferón gamma/fisiología , Interleucina-1/farmacología , Janus Quinasa 2 , Ratones , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Óxido Nítrico/biosíntesis , Oncostatina M , Péptidos/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/fisiología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes de Fusión/fisiología , Factor de Transcripción STAT1 , Factor de Transcripción STAT3 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transactivadores/antagonistas & inhibidores , Transactivadores/fisiología , Transfección , Factor de Necrosis Tumoral alfa/fisiología , Tirfostinos/farmacología , Venas Umbilicales
5.
Cell Biochem Biophys ; 41(3): 415-34, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15509890

RESUMEN

Tetrahydrobiopterin (BH4) is a member of the pterin family that has a core structure of pyrazino-2,3-d-pyrimidine rings. Because BH4 is an essential cofactor for the biosynthesis of nitric oxide (a major vasodilator), there is growing interest in BH4 biochemistry in endothelial cells (the cells that line blood vessels). BH4 is synthesized via de novo and salvage pathways from guanosine 5'-triphosphate (GTP) and 7,8-dihydrobiopterin, respectively, in animal cells. GTP cyclohydrolase-I (GTP-CH) is the first and rate-controlling enzyme in the de novo pathway. Available evidence shows that endothelial GTP-CH expression and BH4 synthesis are stimulated by a wide array of nutritional (phenylalanine and arginine), hormonal (insulin and estrogen), immunological (inflammatory cytokines including interleukin [IL]-1, interferon-gamma, and tumor necrosis factor-alpha), therapeutic (statins and cyclosporin A), and endothelium-derived (basic fibroblast growth factor and H2O2) factors. In contrast, glucocorticoids and anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor [TGF]-beta) inhibit endothelial BH4 synthesis. Because BH4 is oxidized to 7,8-dihydrobiopterin and 7,8-dihydropterin at physiological pH, endothelial BH4 homeostasis is regulated by both BH4 synthesis and its oxidation. Vitamin C, folate, and other antioxidants enhance endothelial BH4 bioavailability through chemical stabilization or scavenging of reactive oxygen species, thereby contributing to the maintenance of physiological homeostasis in the endothelium. New knowledge about the cellular and molecular mechanisms for the regulation of endothelial BH4 synthesis and bioavailability is beneficial for developing effective means to prevent and treat cardiovascular disorders, the leading cause of death in developed nations.


Asunto(s)
Biopterinas/análogos & derivados , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Animales , Biopterinas/biosíntesis , Biopterinas/química , Citocinas/metabolismo , Estrógenos/química , GTP Ciclohidrolasa/metabolismo , Glucocorticoides/química , Humanos , Concentración de Iones de Hidrógeno , Modelos Biológicos , Óxido Nítrico/metabolismo , Oxígeno/química , Fenilalanina/química
6.
J Biol Chem ; 279(49): 51534-40, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15448133

RESUMEN

GTP cyclohydrolase I (GTPCHI) is the rate-limiting enzyme involved in the biosynthesis of tetrahydrobiopterin, a key cofactor necessary for nitric oxide synthase and for the hydroxylases that are involved in the production of catecholamines and serotonin. In animals, the GTPCHI feedback regulatory protein (GFRP) binds GTPCHI to mediate feed-forward activation of GTPCHI activity in the presence of phenylalanine, whereas it induces feedback inhibition of enzyme activity in the presence of biopterin. Here, we have reported the crystal structure of the biopterin-induced inhibitory complex of GTPCHI and GFRP and compared it with the previously reported phenylalanine-induced stimulatory complex. The structure reveals five biopterin molecules located at each interface between GTPCHI and GFRP. Induced fitting structural changes by the biopterin binding expand large conformational changes in GTPCHI peptide segments forming the active site, resulting in inhibition of the activity. By locating 3,4-dihydroxy-phenylalanine-responsive dystonia mutations in the complex structure, we found mutations that may possibly disturb the GFRP-mediated regulation of GTPCHI.


Asunto(s)
Biopterinas/química , GTP Ciclohidrolasa/antagonistas & inhibidores , Proteínas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Dihidroxifenilalanina/farmacología , Escherichia coli/metabolismo , GTP Ciclohidrolasa/química , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Péptidos/química , Fenilalanina/química , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas
7.
J Biol Chem ; 277(49): 47073-9, 2002 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-12359727

RESUMEN

Nitric oxide (NO) regulates the biological activity of many enzymes and other functional proteins as well as gene expression. In this study, we tested whether pretreatment with NO regulates NO production in response to cytokines in cultured rat hepatocytes. Hepatocytes were recovered in fresh medium for 24 h following pretreatment with the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) and stimulated to express the inducible NO synthase (iNOS) with interleukin-1beta and interferon-gamma or transfected with the human iNOS gene. NO pretreatment resulted in a significant increase in NO production without changing iNOS expression for both conditions. This effect, which did not occur in macrophages and smooth muscle cells, was inhibited when NO was scavenged using red blood cells. Pretreatment with oxidized SNAP, 8-Br-cGMP, NO(2)(-), or NO(3)(-) did not increase the cytokine-induced NO production. SNAP pretreatment increased cytosolic iNOS activity measured only in the absence of exogenous tetrahydrobiopterin (BH(4)). SNAP pretreatment suppressed the level of GTP cyclohydrolase I (GTPCHI) feedback regulatory protein (GFRP) and increased GTPCHI activity without changing GTPCHI protein level. SNAP pretreatment also increased total cellular levels of biopterin and active iNOS dimer. These results suggest that SNAP pretreatment increased NO production from iNOS by elevating cellular BH(4) levels and promoting iNOS subunit dimerization through the suppression of GFRP levels and subsequent activation of GTPCHI.


Asunto(s)
Biopterinas/análogos & derivados , GMP Cíclico/análogos & derivados , Citocinas/metabolismo , GTP Ciclohidrolasa/metabolismo , Hepatocitos/metabolismo , Óxido Nítrico Sintasa/química , Óxido Nítrico/farmacología , Penicilamina/análogos & derivados , Animales , Biopterinas/farmacología , Northern Blotting , Western Blotting , Células Cultivadas , GMP Cíclico/metabolismo , Dimerización , Relación Dosis-Respuesta a Droga , Activación Enzimática , Humanos , Masculino , Músculo Liso/citología , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II , Nitritos/metabolismo , Penicilamina/metabolismo , Unión Proteica , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Transfección
8.
Proc Natl Acad Sci U S A ; 99(3): 1212-7, 2002 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-11818540

RESUMEN

In the presence of phenylalanine, GTP cyclohydrolase I feedback regulatory protein (GFRP) forms a stimulatory 360-kDa complex with GTP cyclohydrolase I (GTPCHI), which is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. The crystal structure of the stimulatory complex reveals that the GTPCHI decamer is sandwiched by two GFRP homopentamers. Each GFRP pentamer forms a symmetrical five-membered ring similar to beta-propeller. Five phenylalanine molecules are buried inside each interface between GFRP and GTPCHI, thus enhancing the binding of these proteins. The complex structure suggests that phenylalanine-induced GTPCHI x GFRP complex formation enhances GTPCHI activity by locking the enzyme in the active state.


Asunto(s)
GTP Ciclohidrolasa/química , Proteínas/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Escherichia coli/genética , GTP Ciclohidrolasa/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Ratas , Proteínas Recombinantes/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA