Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Langmuir ; 40(12): 6229-6243, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483280

RESUMEN

The adsorption behavior of poly(methyl acrylate) (PMA)-based polymer additives and their mechanical response under fluid lubrication in narrow gaps were investigated by using neutron reflectometry, microchannel devices, and the narrow gap viscometer. The surface adsorption layer formed by the polymer additive in a stationary field that was investigated by neutron reflectometry was only about 3 nm thick. On the other hand, when the sample oil containing the polymer additive was flowed into the microchannel device with channels about 500 nm deep, the adsorption layer grew over a long period of time and eventually formed a layer that appeared to be more than 100 nm thick. The mechanical response was measured during one-directional rotation with a constant gap length by using the narrow gap viscometer. The results showed that the effective viscosity increased in the low shear rate range. The same behavior was also observed in the reciprocating rotational tests, where the mechanical response showed a distinctive distortion only when the shear rate was low near 0 rpm. The results of the neutron reflectometer, incorporating the narrow gap viscometer, showed no effect of the rotational speed with regard to the structure of the homogeneous layer over a large area. However, the discrepancy between the reflectivity profile and the fitting curve became progressively more pronounced with time, confirming the formation of inhomogeneous structures with time. It is finally suggested that the inhomogeneous structure is due to the formation of local aggregates by PMA molecules, and it acts as flow resistance only in the low shear rate, resulting in an increase in effective viscosity.

2.
Sci Rep ; 14(1): 6723, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509168

RESUMEN

A chemical proteomics approach using Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor-immobilized sepharose (TIM-063-Kinobeads) identified main targets such as CaMKKα/1 and ß/2, and potential off-target kinases, including AP2-associated protein kinase 1 (AAK1), as TIM-063 interactants. Because TIM-063 interacted with the AAK1 catalytic domain and inhibited its enzymatic activity moderately (IC50 = 8.51 µM), we attempted to identify potential AAK1 inhibitors from TIM-063-derivatives and found a novel AAK1 inhibitor, TIM-098a (11-amino-2-hydroxy-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one) which is more potent (IC50 = 0.24 µM) than TIM-063 without any inhibitory activity against CaMKK isoforms and a relative AAK1-selectivity among the Numb-associated kinases family. TIM-098a could inhibit AAK1 activity in transfected cultured cells (IC50 = 0.87 µM), indicating cell-membrane permeability of the compound. Overexpression of AAK1 in HeLa cells significantly reduced the number of early endosomes, which was blocked by treatment with 10 µM TIM-098a. These results indicate TIM-063-Kinobeads-based chemical proteomics is efficient for identifying off-target kinases and re-evaluating the kinase inhibitor (TIM-063), leading to the successful development of a novel inhibitory compound (TIM-098a) for AAK1, which could be a molecular probe for AAK1. TIM-098a may be a promising lead compound for a more potent, selective and therapeutically useful AAK1 inhibitor.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Células HeLa , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Fosforilación
3.
Immun Inflamm Dis ; 11(11): e1093, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38018588

RESUMEN

BACKGROUND: We have identified and reported a novel antigen, nonprotein-specific secreted EP1-like glycoprotein (51 kDa), for lettuce-related respiratory allergy. OBJECTIVE: We aimed to identify a novel antigen for lettuce-related respiratory allergy that is different from epidermis-specific secreted EP1-like glycoprotein. METHODS: Immunoblotting was performed using an immunoglobulin E-specific antibody. The antigen-antibody reaction was confirmed by means of enzyme-linked immunosorbent assaying. LC-MS/MS analysis was carried out to detect a novel protein found in sera from 3 of 13 patients with lettuce-related respiratory allergy. Finally, we purified a novel protein from Escherichia coli. RESULTS: Immunoblotting assays showed common bands of 17 kDa in the sera of 3 of 13 patients. An enzyme-linked immunosorbent assay confirmed that the patient sera reacted with lettuce latex juice. A 17 kDa protein band that showed antigenic reactivity in 3 of 13 patient sera was identified as a kirola-like protein by LC-MS/MS. In addition, although we purified this protein, we failed to show the inhibitory effect. CONCLUSION: A 17 kDa protein that is a potentially novel antigen of lettuce-associated respiratory allergy was identified. In further studies, we will focus on purifying this novel protein to diagnose lettuce allergy.


Asunto(s)
Hipersensibilidad a los Alimentos , Lactuca , Humanos , Lactuca/metabolismo , Alérgenos , Agricultores , Cromatografía Liquida , Espectrometría de Masas en Tándem , Inmunoglobulina E , Glicoproteínas
4.
FEBS Lett ; 596(20): 2659-2667, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35953458

RESUMEN

Follicular dendritic cells (FDCs) play a crucial role in generating high-affinity antibody-producing B cells during the germinal center (GC) reaction. Herein, we analysed the altered gene expression profile of a mouse FDC line, FL-Y, following lymphotoxin ß receptor stimulation, and observed increased Slam-family member 8 (Slamf8) mRNA expression. Forced Slamf8 expression and SLAMF8-Fc addition enhanced the ability of FL-Y cells to induce FDC-induced monocytic cell (FDMC) differentiation. FDMCs accelerated GC-phenotype proliferation in cultured B cells, suggesting that they are capable of promoting GC responses. Furthermore, a pulldown assay showed that SLAMF8-Fc could bind to SLAMF8-His. Overall, the homophilic interaction of SLAMF8 promotes FDMC differentiation and SLAMF8 might act as a novel regulator of GC responses by regulating FDMC differentiation.


Asunto(s)
Células Dendríticas Foliculares , Receptor beta de Linfotoxina , Ratones , Animales , Células Dendríticas Foliculares/metabolismo , Receptor beta de Linfotoxina/metabolismo , Centro Germinal/metabolismo , Linfocitos B/metabolismo , Diferenciación Celular/genética , ARN Mensajero/metabolismo , Células Dendríticas
5.
FEBS J ; 289(19): 5971-5984, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35490408

RESUMEN

Calcium/calmodulin-dependent protein kinase kinases (CaMKKs) activate CaMKI, CaMKIV, protein kinase B/Akt, and AMP-activated protein kinase (AMPK) by phosphorylating Thr residues in activation loops to mediate various Ca2+ -signaling pathways. Mammalian cells expressing CaMKKα and CaMKKß lacking Arg/Pro-rich insert domain (RP-domain) sequences showed impaired phosphorylation of AMPKα, CaMKIα, and CaMKIV, whereas the autophosphorylation activities of CaMKK mutants remained intact and were similar to those of wild-type CaMKKs. Liver kinase B1 (LKB1, an AMPK kinase) complexed with STRAD and MO25 and was unable to phosphorylate CaMKIα and CaMKIV; however, mutant LKB1 with the RP-domain sequences of CaMKKα and CaMKKß inserted between kinase subdomains II and III acquired CaMKIα and CaMKIV phosphorylating activity in vitro and in transfected cultured cells. Furthermore, ionomycin-induced phosphorylation of hemagglutinin (HA)-CaMKIα at Thr177, HA-CaMKIV at Thr196, and HA-AMPKα at Thr172 in transfected cells was significantly suppressed by cotransfection of kinase-dead mutants of CaMKK isoforms, but these dominant-negative effects were abrogated with RP-deletion mutants, suggesting that sequestration of substrate kinases by loss-of-function CaMKK mutants requires the RP-domain. This was confirmed by pulldown experiments that showed that dominant-negative mutants of CaMKKα and CaMKKß interact with target kinases but not RP-deletion mutants. Taken together, these results clearly indicate that both CaMKK isoforms require the RP-domain to recognize downstream kinases to interact with and phosphorylate Thr residues in their activation loops. Thus, the RP-domain may be a promising target for specific CaMKK inhibitors.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/química , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Hemaglutininas , Ionomicina , Mamíferos/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
Biochemistry ; 61(7): 545-553, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35274528

RESUMEN

Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), a Ca2+/CaM-dependent enzyme that phosphorylates and activates multifunctional kinases, including CaMKI, CaMKIV, protein kinase B/Akt, and 5'AMP-activated protein kinase, is involved in various Ca2+-signaling pathways in cells. Recently, we developed an ATP-competitive CaMKK inhibitor, TIM-063 (2-hydroxy-3-nitro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one, Ohtsuka et al. Biochemistry 2020, 59, 1701-1710). To gain mechanistic insights into the interaction of CaMKK with TIM-063, we prepared TIM-063-coupled sepharose (TIM-127-sepharose) for association/dissociation analysis of the enzyme/inhibitor complex. CaMKKα/ß in transfected COS-7 cells and in mouse brain extracts specifically bound to TIM-127-sepharose and dissociated following the addition of TIM-063 in a manner similar to that of recombinant GST-CaMKKα/ß, which could bind to TIM-127-sepharose in a Ca2+/CaM-dependent fashion and dissociate from the sepharose following the addition of TIM-063 in a dose-dependent manner. In contrast to GST-CaMKKα, GST-CaMKKß was able to weakly bind to TIM-127-sepharose in the presence of EGTA, probably due to the partially active conformation of recombinant GST-CaMKKß without Ca2+/CaM-binding. These results suggested that the regulatory domain of CaMKKα prevented the inhibitor from interacting with the catalytic domain as the GST-CaMKKα mutant (residues 126-434) lacking the regulatory domain (residues 438-463) interacted with TIM-127-sepharose regardless of the presence or absence of Ca2+/CaM. Furthermore, CaMKKα bound to TIM-127-sepharose in the presence of Ca2+/CaM completely dissociated from TIM-127-sepharose following the addition of excess EGTA. These results indicated that TIM-063 interacted with and inhibited CaMKK in its active state but not in its autoinhibited state and that this interaction is likely reversible, depending on the concentration of intracellular Ca2+.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Ratones , Fosforilación , Unión Proteica , Transducción de Señal
7.
Biochem Biophys Res Commun ; 605: 90-96, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35316768

RESUMEN

Patients with type 2 diabetes often exhibit impairments in both glucose-induced insulin secretion (GIIS) and incretin-induced insulin secretion (IIIS). These phenotypes are associated with altered glucose metabolism in pancreatic ß-cells, although the molecular mechanisms remain unclear. Here, we used MIN6-K8 pancreatic ß-cell lines as a model to examine the effect of O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation), a glucose-induced protein posttranslational modification, on insulin secretion. O-GlcNAcylation was enhanced in high-glucose-treated MIN6-K8 cells, and high levels of O-GlcNAcylation attenuated PKA-dependent phosphorylation, suggesting that the two protein modifications may compete with each other. Immunoprecipitation proteomic analysis identified six candidate proteins that were O-GlcNAcylated by high-glucose treatment, whereas the O-GlcNAcylations were removed by treatment with an incretin mimetic, exendin-4. Among these proteins, knockdown of myocyte enhancer factor 2D (Mef2d) enhanced insulin secretion, and high-glucose treatment increased the level of O-GlcNAcylation of Mef2d in MIN6-K8 cells. Furthermore, knockout of Mef2d promoted GIIS in MIN6-K8 cells, whereas adenovirus-mediated rescue of Mef2d decreased GIIS in the knockout cells. These results suggest that Mef2d negatively regulates insulin secretion through O-GlcNAcylation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Acetilglucosamina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Humanos , Incretinas , Secreción de Insulina , Factores de Transcripción MEF2/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica
8.
Biochem Biophys Res Commun ; 587: 160-165, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34875535

RESUMEN

Ca2+/calmodulin-dependent protein kinase kinases (CaMKKα and ß) are regulatory kinases for multiple downstream kinases, including CaMKI, CaMKIV, PKB/Akt, and AMP-activated protein kinase (AMPK) through phosphorylation of each activation-loop Thr residue. In this report, we biochemically characterize the oligomeric structure of CaMKK isoforms through a heterologous expression system using COS-7 cells. Oligomerization of CaMKK isoforms was readily observed by treating CaMKK transfected cells with cell membrane permeable crosslinkers. In addition, His-tagged CaMKKα (His-CaMKKα) pulled down with FLAG-tagged CaMKKα (FLAG-CaMKKα) in transfected cells. The oligomerization of CaMKKα was confirmed by the fact that GST-CaMKKα/His-CaMKKα complex from transiently expressed COS-7 cells extracts was purified to near homogeneity by the sequential chromatography using glutathione-sepharose/Ni-sepharose and was observed in a Ca2+/CaM-independent manner by reciprocal pulldown assay, suggesting the direct interaction between monomeric CaMKKα. Furthermore, the His-CaMKKα kinase-dead mutant (D293A) complexed with FLAG-CaMKKα exhibited significant CaMKK activity, indicating the active CaMKKα multimeric complex. Collectively, these results suggest that CaMKKα can self-associate in the cells, constituting a catalytically active oligomer that might be important for the efficient activation of CaMKK-mediated intracellular signaling.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/química , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/química , Glutatión Transferasa/química , Proteínas Recombinantes de Fusión/química , Animales , Sitios de Unión , Células COS , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Chlorocebus aethiops , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilación , Unión Proteica , Multimerización de Proteína , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
9.
Am J Physiol Cell Physiol ; 321(3): C549-C558, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106787

RESUMEN

Cell signaling pathways regulating myosin regulatory light chain (LC20) phosphorylation contribute to determining contractile responses in smooth muscles. Following excitation and contraction, phasic smooth muscles, such as the digestive tract and urinary bladder, undergo relaxation due to a decline of cellular Ca2+ concentration and decreased Ca2+ sensitivity of LC20 phosphorylation, named Ca2+ desensitization. Here, we determined the mechanisms underlying the temporal Ca2+ desensitization of LC20 phosphorylation in phasic smooth muscles using permeabilized strips of the mouse ileum and urinary bladder. Upon stimulation with pCa6.0 at 20°C, contraction and LC20 phosphorylation peaked within 30 s and then declined to about 50% of the peak force at 2 min after stimulation. During the relaxation phase after the contraction, LC20 kinase [myosin light chain kinase (MLCK)] was inactivated, but no fluctuation in LC20 phosphatase activity occurred, suggesting that MLCK inactivation is a cause of the Ca2+-induced Ca2+ desensitization of LC20 phosphorylation. MLCK inactivation was associated with phosphorylation at the calmodulin-binding domain of the kinase. Treatment with STO-609 and TIM-063 antagonists for Ca2+/calmodulin (CaM)-dependent protein kinase kinase-ß (CaMKKß) attenuated both the phasic response of the contraction and MLCK phosphorylation, whereas neither CaM kinase II, AMP-activated protein kinase, nor p21-activated kinase induced MLCK inactivation in phasic smooth muscles. Conversely, protein phosphatase 2A inhibition amplified the phasic response. Signaling pathways through CaMKKß and protein phosphatase 2A may contribute to regulating the phasic response of smooth muscle contraction.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Músculo Liso Vascular/metabolismo , Cadenas Ligeras de Miosina/genética , Quinasa de Cadena Ligera de Miosina/genética , Proteína Fosfatasa 2/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Bencimidazoles/farmacología , Calcio/metabolismo , Señalización del Calcio , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Femenino , Regulación de la Expresión Génica , Íleon/metabolismo , Ratones , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso Vascular/efectos de los fármacos , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Naftalimidas/farmacología , Fosforilación , Proteína Fosfatasa 2/metabolismo , Técnicas de Cultivo de Tejidos , Vejiga Urinaria/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
10.
J Bone Miner Res ; 36(8): 1535-1547, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33905562

RESUMEN

Auditory ossicles in the middle ear and bony labyrinth of the inner ear are highly mineralized in adult mammals. Cellular mechanisms underlying formation of dense bone during development are unknown. Here, we found that osteoblast-like cells synthesizing highly mineralized hearing-related bones produce both type I and type II collagens as the bone matrix, while conventional osteoblasts and chondrocytes primarily produce type I and type II collagens, respectively. Furthermore, these osteoblast-like cells were not labeled in a "conventional osteoblast"-specific green fluorescent protein (GFP) mouse line. Type II collagen-producing osteoblast-like cells were not chondrocytes as they express osteocalcin, localize along alizarin-labeled osteoid, and form osteocyte lacunae and canaliculi, as do conventional osteoblasts. Auditory ossicles and the bony labyrinth exhibit not only higher bone matrix mineralization but also a higher degree of apatite orientation than do long bones. Therefore, we conclude that these type II collagen-producing hypermineralizing osteoblasts (termed here auditory osteoblasts) represent a new osteoblast subtype. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Huesos , Osteoblastos , Animales , Calcificación Fisiológica , Audición , Ratones , Osteocalcina
11.
Biomolecules ; 11(4)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808200

RESUMEN

During screening of protein-protein interactions, using human protein arrays carrying 19,676 recombinant glutathione s-transferase (GST)-fused human proteins, we identified the high-mobility protein group 20A (HMG20A) as a novel S100A6 binding partner. We confirmed the Ca2+-dependent interaction of HMG20A with S100A6 by the protein array method, biotinylated S100A6 overlay, and GST-pulldown assay in vitro and in transfected COS-7 cells. Co-immunoprecipitation of S100A6 with HMG20A from HeLa cells in a Ca2+-dependent manner revealed the physiological relevance of the S100A6/HMG20A interaction. In addition, HMG20A has the ability to interact with S100A1, S100A2, and S100B in a Ca2+-dependent manner, but not with S100A4, A11, A12, and calmodulin. S100A6 binding experiments using various HMG20A mutants revealed that Ca2+/S100A6 interacts with the C-terminal region (residues 311-342) of HMG20A with stoichiometric binding (HMG20A:S100A6 dimer = 1:1). This was confirmed by the fact that a GST-HMG20A mutant lacking the S100A6 binding region (residues 311-347, HMG20A-ΔC) failed to interact with endogenous S100A6 in transfected COS-7 cells, unlike wild-type HMG20A. Taken together, these results identify, for the first time, HMG20A as a target of Ca2+/S100 proteins, and may suggest a novel linkage between Ca2+/S100 protein signaling and HMG20A function, including in the regulation of neural differentiation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteína A6 de Unión a Calcio de la Familia S100/metabolismo , Animales , Sitios de Unión , Células COS , Proteínas de Ciclo Celular/genética , Chlorocebus aethiops , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Células HeLa , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Análisis por Matrices de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteína A6 de Unión a Calcio de la Familia S100/genética
12.
Cell Calcium ; 96: 102404, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33831707

RESUMEN

To elucidate S100 protein-mediated signaling pathways, we attempted to identify novel binding partners for S100A2 by screening protein arrays carrying 19,676 recombinant glutathione S-transferase (GST)-fused human proteins with biotinylated S100A2. Among newly discovered putative S100A2 interactants, including TMLHE, TRH, RPL36, MRPS34, CDR2L, OIP5, and MED29, we identified and characterized the tubulin polymerization-promoting protein (TPPP) as a novel S100A2-binding protein. We confirmed the interaction of TPPP with Ca2+/S100A2 by multiple independent methods, including the protein array method, S100A2 overlay, and pulldown assay in vitro and in transfected COS-7 cells. Based on the results from the S100A2 overlay assay using various GST-TPPP mutants, the S100A2-binding region was identified in the C-terminal (residues 111-160) of the central core domain of a monomeric form of TPPP that is involved in TPPP dimerization. Chemical cross-linking experiments indicated that S100A2 suppresses dimer formation of His-tagged TPPP in a dose-dependent and a Ca2+-dependent manner. In addition to S100A2, TPPP dimerization is disrupted by other multiple S100 proteins, including S100A6 and S100B, in a Ca2+-dependent manner but not by S100A4. This is consistent with the fact that S100A6 and S100B, but not S100A4, are capable of interacting with GST-TPPP in the presence of Ca2+. Considering these results together, TPPP was identified as a novel target for S100A2, and it is a potential binding target for other multiple S100 proteins, including S100A6 and S100B. Direct binding of the S100 proteins with TPPP may cause disassembly of TPPP dimer formation in response to the increasing concentration of intracellular Ca2+, thus resulting in the regulation of the physiological function of TPPP, such as microtubule organization.


Asunto(s)
Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Polimerizacion , Proteínas S100/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Células COS , Chlorocebus aethiops , Humanos , Proteínas del Tejido Nervioso/química , Proteínas S100/química , Tubulina (Proteína)/química
13.
Sci Rep ; 11(1): 5990, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727633

RESUMEN

Anion exchanger 2 (AE2) plays crucial roles in regulating cell volume homeostasis and cell migration. We found that both IRBIT and Long-IRBIT (L-IRBIT) interact with anion exchanger 2 (AE2). The interaction occurred between the conserved AHCY-homologous domain of IRBIT/L-IRBIT and the N-terminal cytoplasmic region of AE2. Interestingly, AE2 activity was reduced in L-IRBIT KO cells, but not in IRBIT KO cells. Moreover, AE2 activity was slightly increased in IRBIT/L-IRBIT double KO cells. These changes in AE2 activity resulted from changes in the AE2 expression level of each mutant cell, and affected the regulatory volume increase and cell migration. The activity and expression level of AE2 in IRBIT/L-IRBIT double KO cells were downregulated if IRBIT, but not L-IRBIT, was expressed again in the cells, and the downregulation was cancelled by the co-expression of L-IRBIT. The mRNA levels of AE2 in each KO cell did not change, and the downregulation of AE2 in L-IRBIT KO cells was inhibited by bafilomycin A1. These results indicate that IRBIT binding facilitates the lysosomal degradation of AE2, which is inhibited by coexisting L-IRBIT, suggesting a novel regulatory mode of AE2 activity through the binding of two homologous proteins with opposing functions.


Asunto(s)
Antiportadores de Cloruro-Bicarbonato/metabolismo , Activación del Canal Iónico , Lectinas Tipo C/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Bicarbonatos/metabolismo , Transporte Biológico , Línea Celular , Antiportadores de Cloruro-Bicarbonato/química , Cloruros/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/genética , Melanoma Experimental , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Multimerización de Proteína , Proteolisis , Estrés Fisiológico
14.
Clin Exp Allergy ; 50(8): 932-941, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32542808

RESUMEN

BACKGROUND: Lettuce-associated respiratory allergy has never been reported before. The aim of this study was to clarify the clinical condition of lettuce-associated respiratory allergy and to identify the lettuce antigen which induces allergic symptoms. METHODS: We distributed questionnaires to 1168 lettuce farmers and performed medical examinations in those who exhibited respiratory symptoms related to occupational exposure to lettuce. We analysed specific IgE-binding proteins in the sera of patients through immunoblotting analysis and determined molecular characterization of the IgE-binding bands using liquid chromatography-mass spectrometry. RESULTS: A total of 932 farmers (80%) responded to the questionnaire. Of those, 7% exhibited lettuce-associated respiratory symptoms, during harvesting and packaging. Thirteen patients were diagnosed with allergy to lettuce and agreed to undergo further examinations. The percentage of activated basophils in these patients was significantly higher compared with that reported in negative controls (P < .05). Lettuce-specific IgE (ImmunoCAP® ) and skin prick testing was positive in 46% and 62% of patients, respectively. Notably, occupational lettuce-allergic asthma was detected in one patient through specific bronchial provocation testing. The IgE-binding bands recognized in the sera of >50% of patients were identified as epidermis-specific secreted glycoprotein EP1-like (51 kDa). CONCLUSION: The present analysis identified a novel lettuce allergen. This allergen may have clinically useful applications, such as specific IgE testing and allergen-specific immunotherapy.


Asunto(s)
Enfermedades de los Trabajadores Agrícolas/inmunología , Alérgenos/inmunología , Lactuca/inmunología , Proteínas de Plantas/inmunología , Hipersensibilidad Respiratoria/inmunología , Anciano , Enfermedades de los Trabajadores Agrícolas/sangre , Enfermedades de los Trabajadores Agrícolas/diagnóstico , Biomarcadores/sangre , Pruebas de Provocación Bronquial , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina E/sangre , Pruebas Intradérmicas , Japón , Masculino , Persona de Mediana Edad , Exposición Profesional , Salud Laboral , Valor Predictivo de las Pruebas , Hipersensibilidad Respiratoria/sangre , Hipersensibilidad Respiratoria/diagnóstico , Factores de Riesgo
15.
Biochemistry ; 59(17): 1701-1710, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32298102

RESUMEN

Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) activates particular multifunctional kinases, including CaMKI, CaMKIV, and 5'AMP-activated protein kinase (AMPK), resulting in the regulation of various Ca2+-dependent cellular processes, including neuronal, metabolic, and pathophysiological pathways. We developed and characterized a novel pan-CaMKK inhibitor, TIM-063 (2-hydroxy-3-nitro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one) derived from STO-609 (7H-benzimidazo[2,1-a]benz[de]isoquinoline-7-one-3-carboxylic acid), and an inactive analogue (TIM-062) as molecular probes for the analysis of CaMKK-mediated cellular responses. Unlike STO-609, TIM-063 had an inhibitory activity against CaMKK isoforms (CaMKKα and CaMKKß) with a similar potency (Ki = 0.35 µM for CaMKKα, and Ki = 0.2 µM for CaMKKß) in vitro. Two TIM-063 analogues lacking a nitro group (TIM-062) or a hydroxy group (TIM-064) completely impaired CaMKK inhibitory activities, indicating that both substituents are necessary for the CaMKK inhibitory activity of TIM-063. Enzymatic analysis revealed that TIM-063 is an ATP-competitive inhibitor that directly targets the catalytic domain of CaMKK, similar to STO-609. TIM-063 suppressed the ionomycin-induced phosphorylation of exogenously expressed CaMKI, CaMKIV, and endogenous AMPKα in HeLa cells with an IC50 of ∼0.3 µM, and it suppressed CaMKK isoform-mediated CaMKIV phosphorylation in transfected COS-7 cells. Thus, TIM-063, but not the inactive analogue (TIM-062), displayed cell permeability and the ability to inhibit CaMKK activity in cells. Taken together, these results indicate that TIM-063 could be a useful tool for the precise analysis of CaMKK-mediated signaling pathways and may be a promising lead compound for the development of therapeutic agents for the treatment of CaMKK-related diseases.


Asunto(s)
Bencimidazoles/química , Bencimidazoles/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Naftalimidas/química , Naftalimidas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células COS , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Chlorocebus aethiops , Células HeLa , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología
16.
Artículo en Inglés | MEDLINE | ID: mdl-32085894

RESUMEN

Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß) acts as a regulatory kinase that phosphorylates and activates multiple downstream kinases including CaMKI, CaMKIV, 5'AMP-activated protein kinase (AMPK) and protein kinase B (PKB), resulting in regulation of wide variety of Ca2+-dependent physiological responses under normal and pathological conditions. CaMKKß is regulated by Ca2+/calmodulin-binding, autophosphorylation, and transphosphorylation by multiple protein kinases including cAMP-dependent protein kinase (PKA). In this report, we found that phosphorylation of CaMKKß is dynamically regulated by protein phosphatase/kinase system in HeLa cells. Global phosphoproteomic analysis revealed the constitutive phosphorylation at 8 Ser residues including Ser128, 132, and 136 in the N-terminal regulatory domain of rat CaMKKß in unstimulated HeLa cells as well as inducible phosphorylation of Thr144 in the cells treated with a phosphatase inhibitor, okadaic acid (OA). Thr144 phosphorylation in CaMKKß has shown to be rapidly induced by OA treatment in a time- and dose-dependent manner in transfected HeLa cells, indicating that Thr144 in CaMKKß is maintained unphosphorylated state by protein phosphatase(s). We confirmed that in vitro dephosphorylation of pThr144 in CaMKKß by protein phosphatase 2A and 1. We also found that the pharmacological inhibition of protein phosphatase(s) significantly induces CaMKKß-phosphorylating activity (at Thr144) in HeLa cell lysates as well as in intact cells; however, it was unlikely that this activity was catalyzed by previously identified Thr144-kinases, such as AMPK and PKA. Taken together, these results suggest that the phosphorylation and dephosphorylation of Thr144 in CaMKKß is dynamically regulated by multiple kinases/phosphatases signaling resulting in fine-tuning of the enzymatic property.

17.
Sci Rep ; 9(1): 8555, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189981

RESUMEN

The global pandemic of ESBL-producing Escherichia coli is associated with sequence type 131 (ST131). However, mechanisms of ST131 spread remain unclear. This study searched for proteins with amino acid substitutions specific for ST131 and used proteomics analysis to clarify ST131 characteristics. Five proteins had ST131-specific amino acid substitutions: uncharacterized protein YahO with E34A (m/z 7655); UPF0337 protein YjbJ with V59D, D60S and T63K (m/z 8351); uncharacterized protein YnfD with S106T (m/z 8448); and acid stress chaperone HdeA with Q92K and N94S (m/z 9714). Soluble cytochrome b562 (m/z 11783) showed seven amino acid substitutions, and the sequence differed between clade C of the pandemic clade and non-C. In silico analysis showed YahO protein-protein interaction with YjbJ, possibly related to biofilm formation. Although the function of soluble cytochrome b562 is electron transport of unknown function, its involvement in biofilm formation was predicted. HdeA was a gastric acid resistance-related protein. The function of YnfD was completely unclear. In conclusion, ST131-specific protein amino acid substitutions consisted mainly of a gastric acid resistance protein and proteins of unknown function (possibly involved in biofilm formation), which might be mechanisms for long-term colonization in the human intestinal tract.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Espectrometría de Masas , Mutación Missense , Proteómica , beta-Lactamasas , Sustitución de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
18.
Methods Mol Biol ; 1929: 367-377, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30710285

RESUMEN

S100A6 is a member of the EF-hand Ca2+-binding protein family, which plays important roles in a wide variety of Ca2+ signaling in the cells, as well as in pathophysiological conditions. Herein, we describe analytical protocols for evaluating the interaction of S100A6 with multiple target proteins in vitro, including biotinylated S100A6 overlay, glutathione-S-transferase (GST)-precipitation, surface plasmon resonance, and a GST-precipitation assay in living cells. These methods will elucidate the detailed molecular mechanisms of S100A6/target interactions and further improve our understanding of the physiological significance of S100A6-mediated Ca2+ signaling. Moreover, they may be used to evaluate other physical S100/target interactions.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteína A6 de Unión a Calcio de la Familia S100/química , Proteína A6 de Unión a Calcio de la Familia S100/metabolismo , Animales , Biotinilación , Células COS , Señalización del Calcio , Precipitación Química , Chlorocebus aethiops , Humanos , Immunoblotting , Cinética , Unión Proteica , Resonancia por Plasmón de Superficie
19.
Biochim Biophys Acta Gen Subj ; 1863(4): 672-680, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30660766

RESUMEN

BACKGROUND: Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) is a pivotal activator of CaMKI, CaMKIV and 5'-AMP-activated protein kinase (AMPK), controlling Ca2+-dependent intracellular signaling including various neuronal, metabolic and pathophysiological responses. Recently, we demonstrated that CaMKKß is feedback phosphorylated at Thr144 by the downstream AMPK, resulting in the conversion of CaMKKß into Ca2+/CaM-dependent enzyme. However, the regulatory phosphorylation of CaMKKß at Thr144 in intact cells and in vivo remains unclear. METHODS: Anti-phosphoThr144 antibody was used to characterize the site-specific phosphorylation of CaMKKß in immunoprecipitated samples from mouse cerebellum and in transfected mammalian cells that were treated with various agonists and protein kinase inhibitors. CaMKK activity assay and LC-MS/MS analysis were used for biochemical characterization of phosphorylated CaMKKß. RESULTS: Our data suggest that the phosphorylation of Thr144 in CaMKKß is rapidly induced by cAMP/cAMP-dependent protein kinase (PKA) signaling in CaMKKß-transfected HeLa cells, that is physiologically relevant in mouse cerebellum. We confirmed that the catalytic subunit of PKA was capable of directly phosphorylating CaMKKß at Thr144 in vitro and in transfected cells. In addition, the basal phosphorylation of CaMKKß at Thr144 in transfected HeLa cells was suppressed by AMPK inhibitor (compound C). PKA-catalyzed phosphorylation reduced the autonomous activity of CaMKKß in vitro without significant effect on the Ca2+/CaM-dependent activity, resulting in the conversion of CaMKKß into Ca2+/CaM-dependent enzyme. CONCLUSION: cAMP/PKA signaling may confer Ca2+-dependency to the CaMKKß-mediated signaling pathway through direct phosphorylation of Thr144 in intact cells. GENERAL SIGNIFICANCE: Our results suggest a novel cross-talk between cAMP/PKA and Ca2+/CaM/CaMKKß signaling through regulatory phosphorylation.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , AMP Cíclico/metabolismo , Transducción de Señal , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Fosforilación , Ratas , Proteínas Recombinantes/metabolismo
20.
Free Radic Biol Med ; 130: 99-106, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30394289

RESUMEN

We have recently reported that Ca2+/calmodulin (CaM)-dependent protein kinase IV (CaMKIV) is inactivated by reactive sulfur species via polysulfidation of the active-site Cys residue. Here, we show that hydrogen peroxide (H2O2) limit CaMKIV activity at the same active-site Cys residue through oxidation and downstream signaling in cells. CaMKIV is phosphorylated at Thr196 by its upstream CaMK kinase (CaMKK), which induces its full activity. In vitro incubation of CaMKIV with H2O2 resulted in reversible inhibition of CaMKK-induced phospho-Thr196 and the consequent inactivation of CaMKIV. In contrast, mutated CaMKIV (C198V) was refractory to the H2O2-induced enzyme inhibition. In transfected cells expressing CaMKIV, Ca2+ ionophore-induced CaMKIV phosphorylation at Thr196 was decreased upon treatment with H2O2, whereas cells expressing mutant CaMKIV (C198V) were resistant to H2O2 treatment. Modification of free thiol with N-ethylmaleimide revealed that Cys198 in CaMKIV is a target for S-oxidation. Additionally, the Ca2+ influx-induced phospho-Thr196 of endogenous CaMKIV was also inhibited upon treatment with H2O2 in Jurkat T-lymphocytes and cerebellar granule cells. Phosphorylation of cyclic AMP response element-binding protein (CREB) at Ser133, which is downstream of CaMKIV, was also decreased upon treatment with H2O2. Thus, our results indicate that oxidation stress regulates cellular function by decreasing the activity of CaMKIV through Cys198 oxidation.


Asunto(s)
Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Neuronas/fisiología , Linfocitos T/fisiología , Calcio/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/genética , Calmodulina/metabolismo , Dominio Catalítico/genética , AMP Cíclico , Cisteína/genética , Células HeLa , Humanos , Peróxido de Hidrógeno/metabolismo , Células Jurkat , Mutación/genética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...