Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499034

RESUMEN

Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a dismal prognosis. The cytoplasmic spleen tyrosine kinase (SYK) is highly expressed by hematopoietic cells and has emerged as a potential therapeutic target. In this study, we evaluated the in vitro antileukemic effects of five SYK inhibitors, fostamatinib, entospletinib, cerdulatinib, TAK-659, and RO9021, in a consecutive AML patient cohort. All inhibitors demonstrated a concentration-dependent antiproliferative effect, although there was considerable heterogeneity among patients. For fostamatinib and TAK-659, the antiproliferative effects were significantly higher in FLT3 mutated patients compared to nonmutated patients. Fostamatinib, entospletinib, TAK-659, and RO9021 induced significant apoptosis in primary AML cells, although the proapoptotic effects of the SYK inhibitors were less pronounced than the antiproliferative effects. Finally, most of the SYK inhibitors caused a significant decrease in the release of cytokines and chemokines from primary AML cells, indicating a potent inhibitory effect on the release of these leukemic signaling molecules. We concluded that the SYK inhibitors had antileukemic effects in AML, although larger studies are strongly needed to identify which patient subsets will benefit most from such a treatment.


Asunto(s)
Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasa Syk/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Transducción de Señal , Tirosina Quinasa 3 Similar a fms/genética
2.
Biomedicines ; 10(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36009428

RESUMEN

The prognosis of acute myeloid leukemia (AML) is poor, especially for the elderly population. Targeted therapy with small molecules may be a potential strategy to overcome chemoresistance and improve survival in AML. We investigated the inhibition of the signaling molecule ras-related C3 botulinum toxin substrate 1 (Rac1) in leukemia cells derived from 79 consecutive AML patients, using five Rac1 inhibitors: ZINC69391, ITX3, EHOP-016, 1A-116, and NSC23766. In vitro cell proliferation and apoptosis assays and the assessment of cytokine profiles in culture media were conducted. All five inhibitors had an antiproliferative effect; IC50 ranged from 3−24 µM. They induced significant apoptosis and necrosis compared to the untreated controls (p < 0.0001) at concentrations around IC40 and IC80. A high versus an intermediate or low antiproliferative effect was more common in NPM1-mutated (p = 0.002) and CD34-negative (p = 0.008) samples, and when NPM1 and FLT3 (p = 0.027) were combined. Presence of NPM1 mutation was associated with reduced viability after treatment with EHOP-016 (p = 0.014), ITX3 (p = 0.047), and NSC23766 (p = 0.003). Several cytokines crucial for leukemogenesis were reduced after culture, with the strongest effects observed for 1A-116 and NSC23766. Our findings suggest potent effects of Rac1 inhibition in primary AML cells and, interestingly, samples harboring NPM1 mutation seem more vulnerable.

3.
Cancers (Basel) ; 14(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35740576

RESUMEN

Allogeneic stem cell transplantation is used in the treatment of high-risk hematological malignancies. However, this treatment is associated with severe treatment-related morbidity and mortality. The metabolic status of the recipient may be associated with the risk of development of transplant-associated complications such as graft-versus-host disease (GVHD). To better understand the impact of the lipidomic profile of transplant recipients on posttransplant complications, we evaluated the lipid signatures of patients with hematological disease using non-targeted lipidomics. In the present study, we studied pretransplant serum samples derived from 92 consecutive patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS). A total of 960 lipid biochemicals were identified, and the pretransplant lipidomic profiles differed significantly when comparing patients with and without the risk factors: (i) pretransplant inflammation, (ii) early fluid overload, and (iii) patients with and without later steroid-requiring acute GVHD. All three factors, but especially patients with pretransplant inflammation, were associated with decreased levels of several lipid metabolites. Based on the overall concentrations of various lipid subclasses, we identified a patient subset characterized by low lipid levels, increased frequency of MDS patients, signs of inflammation, decreased body mass index, and an increased risk of early non-relapse mortality. Metabolic targeting has been proposed as a possible therapeutic strategy in allotransplant recipients, and our present results suggest that the clinical consequences of therapeutic intervention (e.g., nutritional support) will also differ between patients and depend on the metabolic context.

4.
Biomolecules ; 12(4)2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35454082

RESUMEN

Endocan is a soluble dermatan sulfate proteoglycan expressed by endothelial cells and detected in serum/plasma. Its expression is increased in tumors/tumor vessels in several human malignancies, and high expression (high serum/plasma levels or tumor levels) has an adverse prognostic impact in several malignancies. The p14 endocan degradation product can also be detected in serum/plasma, but previous clinical studies as well as previously unpublished results presented in this review suggest that endocan and p14 endocan fragment levels reflect different biological characteristics, and the endocan levels seem to reflect the disease heterogeneity in acute leukemia better than the p14 fragment levels. Furthermore, decreased systemic endocan levels in previously immunocompetent sepsis patients are associated with later severe respiratory complications, but it is not known whether this is true also for immunocompromised acute leukemia patients. Finally, endocan is associated with increased early nonrelapse mortality in (acute leukemia) patients receiving allogeneic stem cell transplantation, and this adverse prognostic impact seems to be independent of the adverse impact of excessive fluid overload. Systemic endocan levels may also become important to predict cytokine release syndrome after immunotherapy/haploidentical transplantation, and in the long-term follow-up of acute leukemia survivors with regard to cardiovascular risk. Therapeutic targeting of endocan is now possible, and the possible role of endocan in acute leukemia should be further investigated to clarify whether the therapeutic strategy should also be considered.


Asunto(s)
Leucemia Mieloide Aguda , Sepsis , Enfermedad Aguda , Células Endoteliales/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Proteoglicanos/metabolismo
5.
Blood Adv ; 6(18): 5295-5306, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35443023

RESUMEN

Chronic graft-versus-host disease (cGVHD) is the most common long-term complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). During the last decade, the interest of micro RNAs (miRNAs) in the pathophysiological process of cGVHD has increased. The objectives of this study were to investigate a wide range of serum miRNAs in allografted patients and identify associations between miRNAs and cGVHD. The study included 79 allotransplanted adults, where serum samples were obtained 1 year after the allo-HSCT, and miRNA profiling analysis in serum was performed. Fifty of the 79 patients (63%) had signs of cGVHD at the 1-year post-allo-HSCT control. miRNA sequencing analysis revealed 1380 different miRNAs detected for at least 1 patient, whereas 233 miRNAs (17%) were detected in >70 patients. We identified 10 miRNAs that differed significantly between patients with and without cGVHD (P < .005; false discovery rate <0.1), and all of these miRNAs were detected for >75 of the patients. Furthermore, 5 distinct miRNAs, miR-365-3p, miR-148-3p, miR-122-5p, miR-378-3p, and miR-192-5p, were found to be particularly associated with cGVHD in our analysis and were validated by receiver operating characteristics analysis. Based on only 3 miRNAs, miR-365-3p, miR-148-3p, and miR-378-3p, we developed a miRNA signature that, by bioinformatic approaches and linear regression model, utterly improved our potential diagnostic biomarker model for cGVHD. We conclude that miRNAs are differently expressed among patients with and without cGVHD, although further and larger studies are needed to validate our present findings.


Asunto(s)
Enfermedad Injerto contra Huésped , MicroARNs , Adulto , Biomarcadores , Biología Computacional , Perfilación de la Expresión Génica , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Humanos , MicroARNs/genética
6.
Curr Med Res Opin ; 37(12): 2107-2111, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34498983

RESUMEN

Acute myeloid leukemia (AML) is a highly malignant blood cancer disease, with dismal prognosis. The theory that cancer cells utilize metabolism to their growth advantage was postulated almost hundred years ago. However, only recently have been able to take advantage of this Achilles heel of malignant cell growth. Current observations suggest a crucial role for various metabolic pathways in AML, and special in leukemia stem cells, believed to be responsible for re-initiation of the leukemic clone, and hence relapse of this devastating disease. In the present article we discuss the features for metabolism in AML based on recent research, and special emphasizing the potential of pharmacological inhibiting metabolism as new treatment approaches.


Asunto(s)
Leucemia Mieloide Aguda , Medicina de Precisión , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Pronóstico
7.
J Pers Med ; 11(8)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34442423

RESUMEN

Autophagy is a highly conserved cellular degradation process that prevents cell damage and promotes cell survival, and clinical efforts have exploited autophagy inhibition as a therapeutic strategy in cancer. Chloroquine is a well-known antimalarial agent that inhibits late-stage autophagy. We evaluated the effects of chloroquine on cell viability and proliferation of acute myeloid leukemia acute myeloid leukemia (AML) cells derived from 81 AML patients. Our results show that chloroquine decreased AML cell viability and proliferation for the majority of patients. Furthermore, a subgroup of AML patients showed a greater susceptibility to chloroquine, and using hierarchical cluster analysis, we identified 99 genes upregulated in this patient subgroup, including several genes related to leukemogenesis. The combination of chloroquine with low-dose cytarabine had an additive inhibitory effect on AML cell proliferation. Finally, a minority of patients showed increased extracellular constitutive mediator release in the presence of chloroquine, which was associated with strong antiproliferative effects of chloroquine as well as cytarabine. We conclude that chloroquine has antileukemic activity and should be further explored as a therapeutic drug against AML in combination with other cytotoxic or metabolic drugs; however, due to the patient heterogeneity, chloroquine therapy will probably be effective only for selected patients.

8.
Cells ; 9(5)2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392896

RESUMEN

Acute myeloid leukemia (AML) is an aggressive blood cancer resulting in accumulation of immature, dysfunctional blood cells in the bone marrow. Changes in cell metabolism are features of many cancers, including AML and this may be exploited as a therapeutic target. In this study we investigated the in vitro antileukemic effects of seven metabolic inhibitors that target different metabolic pathways. The metabolic inhibitors were tested on AML cells derived from 81 patients using proliferation and viability assays; we also compared global gene expression and proteomic profiles for various patient subsets. Metformin, 2DG, 6AN, BPTES and ST1326 had strong antiproliferative and proapoptotic effects for most patients, whereas lonidamine and AZD3965 had an effect only for a minority. Antiproliferative effects on AML cells were additive when combined with the chemotherapeutic agent AraC. Using unsupervised hierarchical clustering, we identified a strong antiproliferative effect on AML cells after treatment with metabolic inhibitors for a subset of 29 patients. Gene expression and proteomic studies suggested that this subset was characterized by altered metabolic and transcriptional regulation. In addition, the Bcl-2 inhibitor venetoclax, in combination with 2DG or 6AN, increased the antiproliferative effects of these metabolic inhibitors on AML cells. Therapeutic targeting of cellular metabolism may have potential in AML, but the optimal strategy will likely differ between patients.


Asunto(s)
Heterogeneidad Genética , Leucemia Mieloide Aguda/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Análisis por Conglomerados , Citarabina/farmacología , Desoxiglucosa/farmacología , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Cariotipo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad , Mutación/genética , Proteínas Nucleares/genética , Nucleofosmina , Proteómica , Sulfonamidas/farmacología , Análisis de Supervivencia , Adulto Joven , Tirosina Quinasa 3 Similar a fms/genética
9.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326335

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous group of diseases characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Malignant cell growth is characterized by disruption of normal intracellular signaling, caused by mutations or aberrant external signaling. The phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway (PI3K-Akt-mTOR pathway) is among one of the intracellular pathways aberrantly upregulated in cancers including AML. Activation of this pathway seems important in leukemogenesis, and given the central role of this pathway in metabolism, the bioenergetics of AML cells may depend on downstream signaling within this pathway. Furthermore, observations suggest that constitutive activation of the PI3K-Akt-mTOR pathway differs between patients, and that increased activity within this pathway is an adverse prognostic parameter in AML. Pharmacological targeting of the PI3K-Akt-mTOR pathway with specific inhibitors results in suppression of leukemic cell growth. However, AML patients seem to differ regarding their susceptibility to various small-molecule inhibitors, reflecting biological heterogeneity in the intracellular signaling status. These findings should be further investigated in both preclinical and clinical settings, along with the potential use of this pathway as a prognostic biomarker, both in patients receiving intensive curative AML treatment and in elderly/unfit receiving AML-stabilizing treatment.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Biomarcadores , Metabolismo Energético , Humanos , Leucemia Mieloide Aguda/etiología , Células Madre Neoplásicas/metabolismo
10.
Cells ; 8(10)2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658693

RESUMEN

Acute myeloid leukemia (AML) is an aggressive malignancy, and many elderly/unfit patients cannot receive intensive and potentially curative therapy. These patients receive low-toxicity disease-stabilizing treatment. The combination of all-trans retinoic acid (ATRA) and the histone deacetylase inhibitor valproic acid can stabilize the disease for a subset of such patients. We performed untargeted serum metabolomic profiling for 44 AML patients receiving treatment based on ATRA and valproic acid combined with low-dose cytotoxic drugs (cytarabine, hydroxyurea, 6-mercaptopurin) which identified 886 metabolites. When comparing pretreatment samples from responders and non-responders, metabolites mainly belonging to amino acid and lipid (i.e., fatty acid) pathways were altered. Furthermore, patients with rapidly progressive disease showed an extensively altered lipid metabolism. Both ATRA and valproic acid monotherapy also altered the amino acid and lipid metabolite profiles; however, these changes were only highly significant for valproic acid treatment. Twenty-three metabolites were significantly altered by seven-day valproic acid treatment (p < 0.05, q < 0.05), where the majority of altered metabolites belonged to lipid (especially fatty acid metabolism) and amino acid pathways, including several carnitines. These metabolomic effects, and especially the effects on lipid metabolism, may be important for the antileukemic and epigenetic effects of this treatment.


Asunto(s)
Quimioterapia/métodos , Leucemia Mieloide Aguda/tratamiento farmacológico , Metabolómica/métodos , Tretinoina/administración & dosificación , Ácido Valproico/administración & dosificación , Anciano , Anciano de 80 o más Años , Aminoácidos/metabolismo , Citarabina/administración & dosificación , Citarabina/farmacología , Femenino , Humanos , Hidroxiurea/administración & dosificación , Hidroxiurea/farmacología , Leucemia Mieloide Aguda/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Mercaptopurina/administración & dosificación , Mercaptopurina/farmacología , Persona de Mediana Edad , Resultado del Tratamiento , Tretinoina/farmacología , Ácido Valproico/farmacología
11.
Artículo en Inglés | MEDLINE | ID: mdl-31240133

RESUMEN

The phosphatidylinositol 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) pathway is constitutively activated in human acute myeloid leukemia (AML) cells and is regarded as a possible therapeutic target. Insulin is an agonist of this pathway and a growth factor for AML cells. We characterized the effect of insulin on the phosphorylation of 10 mediators in the main track of the PI3K-Akt-mTOR pathway in AML cells from 76 consecutive patients. The overall results showed that insulin significantly increased the phosphorylation of all investigated mediators. However, insulin effects on the pathway activation profile varied among patients, and increased phosphorylation in all mediators was observed only in a minority of patients; in other patients, insulin had divergent effects. Global gene expression profiling and proteomic/phosphoproteomic comparisons suggested that AML cells from these two patient subsets differed with regard to AML cell differentiation, transcriptional regulation, RNA metabolism, and cellular metabolism. Strong insulin-induced phosphorylation was associated with weakened antiproliferative effects of metabolic inhibitors. PI3K, Akt, and mTOR inhibitors also caused divergent effects on the overall pathway phosphorylation profile in the presence of insulin, although PI3K and Akt inhibition caused a general reduction in Akt pT308 and 4EBP1 pT36/pT45 phosphorylation. For Akt inhibition, the phosphorylation of upstream mediators was generally increased or unaltered. In contrast, mTOR inhibition reduced mTOR pS2448 and S6 pS244 phosphorylation but increased Akt pT308 phosphorylation. In conclusion, the effects of both insulin and PI3K-Akt-mTOR inhibitors differ between AML patient subsets, and differences in insulin responsiveness are associated with differential susceptibility to metabolic targeting.

12.
Cancers (Basel) ; 10(9)2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30223538

RESUMEN

Clonal heterogeneity detected by karyotyping is a biomarker associated with adverse prognosis in acute myeloid leukemia (AML). Constitutive activation of the phosphatidylinositol-3-kinase-Akt-mechanistic target of rapamycin (PI3K-Akt-mTOR) pathway is present in AML cells, and this pathway integrates signaling from several upstream receptors/mediators. We suggest that this pathway reflects biologically important clonal heterogeneity. We investigated constitutive PI3K-Akt-mTOR pathway activation in primary human AML cells derived from 114 patients, together with 18 pathway mediators. The cohort included patients with normal karyotype or single karyotype abnormalities and with an expected heterogeneity of molecular genetic abnormalities. Clonal heterogeneity reflected as pathway mediator heterogeneity was detected for 49 patients. Global gene expression profiles of AML cell populations with and without clonal heterogeneity differed with regard to expression of ectopic olfactory receptors (a subset of G-protein coupled receptors) and proteins involved in G-protein coupled receptor signaling. Finally, the presence of clonal heterogeneity was associated with adverse prognosis for patients receiving intensive antileukemic treatment. The clonal heterogeneity as reflected in the activation status of selected mediators in the PI3K-Akt-mTOR pathway was associated with a different gene expression profile and had an independent prognostic impact. Biological heterogeneity reflected in the intracellular signaling status should be further investigated as a prognostic biomarker in human AML.

13.
Cytotherapy ; 20(5): 740-754, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576502

RESUMEN

BACKGROUND: Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and thereafter harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. METHODS: Plasma levels of 38 soluble mediators (cytokines, soluble adhesion molecules, proteases, protease inhibitors) were analyzed in samples derived from healthy stem cell donors before G-CSF treatment and after 4 days, both immediately before and after leukapheresis. RESULTS: Donors could be classified into two main subsets based on their plasma mediator profile before G-CSF treatment. Seventeen of 36 detectable mediators were significantly altered by G-CSF; generally an increase in mediator levels was seen, including pro-inflammatory cytokines, soluble adhesion molecules and proteases. Several leukocyte- and platelet-released mediators were increased during apheresis. Both plasma and graft mediator profiles were thus altered and showed correlations to graft concentrations of leukocytes and platelets; these concentrations were influenced by the apheresis device used. Finally, the mediator profile of the allotransplant recipients was altered by graft infusion, and based on their day +1 post-transplantation plasma profile our recipients could be divided into two major subsets that differed in overall survival. DISCUSSION: G-CSF alters the short-term plasma mediator profile of healthy stem cell donors. These effects together with the leukocyte and platelet levels in the graft determine the mediator profile of the stem cell grafts. Graft infusion also alters the systemic mediator profile of the recipients, but further studies are required to clarify whether such graft-induced alterations have a prognostic impact.


Asunto(s)
Eliminación de Componentes Sanguíneos , Movilización de Célula Madre Hematopoyética , Factores Inmunológicos/metabolismo , Donantes de Tejidos , Adulto , Anciano , Aloinjertos/efectos de los fármacos , Plaquetas/citología , Citocinas/sangre , Supervivencia sin Enfermedad , Femenino , Factor Estimulante de Colonias de Granulocitos/farmacología , Trasplante de Células Madre Hematopoyéticas , Humanos , Leucocitos/citología , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Solubilidad
15.
Metabolomics ; 13(1): 2, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27980502

RESUMEN

INTRODUCTION: Peripheral blood stem cells mobilized by granulocyte colony-stimulating factor (G-CSF) from healthy donors are commonly used for allogeneic stem cell transplantation. The effect of G-CSF administration on global serum metabolite profiles has not been investigated before. OBJECTIVES: This study aims to examine the systemic metabolomic profiles prior to and following administration of G-CSF in healthy adults. METHODS: Blood samples were collected from 15 healthy stem cell donors prior to and after administration of G-CSF 10 µg/kg/day for 4 days. Using a non-targeted metabolomics approach, metabolite levels in serum were determined using ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography/mass spectrometry. RESULTS: Comparison of the metabolite profiles of donors before and after G-CSF treatment revealed 239 metabolites that were significantly altered. The major changes of the metabolite profiles following G-CSF administration included alteration of several fatty acids, including increased levels of several medium and long-chain fatty acids, as well as polyunsaturated fatty acids; while there were lower levels of other lipid metabolites such as phospholipids, lysolipids, sphingolipids. Furthermore, there were significantly lower levels of several amino acids and/or their metabolites, including several amino acids with known immunoregulatory functions (methionine, tryptophan, valine). Lastly, the levels of several nucleotides and nucleotide metabolites (guanosine, adenosine, inosine) were also decreased after G-CSF administration, while methylated products were increased. Some of these altered products/metabolites may potentially have angioregulatory effects whereas others may suggest altered intracellular epigenetic regulation. CONCLUSION: Our results show that G-CSF treatment alters biochemical serum profiles, in particular amino acid, lipid and nucleotide metabolism. Additional studies are needed to further evaluate the relevance of these changes in healthy donors.

16.
Cytotherapy ; 18(2): 172-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26794711

RESUMEN

BACKGROUND AIMS: Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment option for patients with hematological malignancies. Co-transplantation of multipotent mesenchymal stromal cells (MSCs) during allogeneic HSCT has been explored to enhance engraftment and decrease the risk of graft-versus-host disease (GVHD). We aimed to identify, evaluate and summarize the findings of all relevant controlled clinical studies to determine the potential benefits of MSC infusion during allogeneic HSCT, with regard to the outcomes engraftment, GVHD, post-transplant relapse and survival. METHODS: We conducted a systematic search of electronic databases for relevant controlled clinical studies. Studies included patients of all ages with hematological malignancies receiving allogeneic HSCT with or without infusion of MSCs within a 24-h time frame of transplantation. RESULTS: Nine studies met our inclusion criteria, including three randomized, one non-randomized and five historically controlled trials, representing a total of 309 patients. Our meta-analyses did not reveal any statistically significant differences in donor engraftment or GVHD. A review of data regarding relapse and overall survival may result in a positive attitude toward intervention with MSCs, but due to heterogeneous reporting, it is difficult to draw any strict conclusions. None of the studies had overall serious risks of bias, but the quality of the evidence is low. CONCLUSIONS: Meta-analysis did not reveal any statistically significant effects of MSC co-transplantation, but the results must be interpreted with caution because of the weak study design and small study populations. We discuss further needs to explore the potential effects of MSCs in a HSCT setting.


Asunto(s)
Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Neoplasias Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Recurrencia Local de Neoplasia/epidemiología , Adolescente , Adulto , Niño , Preescolar , Supervivencia sin Enfermedad , Enfermedad Injerto contra Huésped/inmunología , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Persona de Mediana Edad , Resultado del Tratamiento
17.
Eur J Haematol ; 96(3): 211-21, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26465810

RESUMEN

Targeting of cellular metabolism has emerged as a possible strategy in the treatment of human malignancies, and several experimental studies suggest that this therapeutic approach should also be considered in acute myeloid leukemia (AML). Clinical studies of metabolic intervention in AML patients with isocitrate dehydrogenase mutations have shown promising results. Moreover, metabolic targeting of the PI3K/AKT/mTOR signaling pathway as an anticancer strategy has been extensively studied. In this review, we focus on other emerging therapeutic alternatives for metabolic inhibition in human AML, in particular targeting of glycolysis and the AMP kinase signaling pathway. Pharmacological drugs for these metabolic interventions are already available and they seem to have an acceptable toxicity, even when used in combination with conventional chemotherapy. Future clinical studies of these therapeutic strategies should focus on the following: (i) heterogeneity of patients and the possibility that this treatment is most effective only for certain subsets of patients, (ii) toxic effects in AML patients with an existing disease-induced bone marrow failure prior to treatment, and (iii) whether this strategy should be used as part of a potentially curative treatment and/or as disease-stabilizing treatment to prolong survival in elderly or unfit patients.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Humanos , Isocitrato Deshidrogenasa/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos
18.
Stem Cell Res ; 15(3): 530-541, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26468600

RESUMEN

Interactions between acute myeloid leukemia (AML) blasts and neighboring stromal cells are important for disease development and chemosensitivity. However, the molecular mechanisms involved in the cytokine-mediated crosstalk between mesenchymal stem cells (MSCs) and AML cells are largely unknown. Leukemic cells derived from 18 unselected AML patients were cultured with bone marrow MSCs derived from healthy donors; the populations then being separated by a semipermeable membrane. Coculture had only minor effects on MSC proliferation. The unique cytokine network in cocultures was determined by high constitutive MSC release of certain cytokines (especially IL-6 and vascular endothelial growth factor) and constitutive release of a wide range of soluble mediators by primary AML cells. However, the AML cell release varied considerably between patients, and these differences between patients were also reflected in the coculture levels even though supra-additive effects were seen for many mediators. These effects on the local cytokine network were dependent on a functional crosstalk between the two cell subsets. The crosstalk altered the global gene expression profile of the MSCs, especially expression of genes encoding proteins involved in downstream signaling from Toll like receptors, NFκB signaling and CCL/CXCL chemokine release. Thus, primary AML cells alter the functional phenotype of normal MSCs.


Asunto(s)
Quimiocinas/metabolismo , Citocinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transcriptoma/genética , Proliferación Celular , Humanos , Células Mieloides , Receptores Toll-Like
19.
Expert Rev Hematol ; 8(3): 299-313, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25835070

RESUMEN

Human acute myeloid leukemia is a heterogeneous disease and the effect of therapeutic targeting of specific molecular mechanisms will probably vary between patient subsets. Cell cycle regulators are among the emerging targets (e.g., aurora and polo-like kinases, cyclin-dependent kinases). Inhibition of communication between acute myeloid leukemia and stromal cells is also considered; among the most promising of these strategies are inhibition of hedgehog-initiated, CXCR4-CXCL12 and Axl-Gas6 signaling. Finally, targeting of energy and protein metabolism is considered, the most promising strategy being inhibition of isocitrate dehydrogenase in patients with IDH mutations. Thus, several strategies are now considered, and a major common challenge for all of them is to clarify how they should be combined with each other or with conventional chemotherapy, and whether their use should be limited to certain subsets of patients.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Terapia Molecular Dirigida/métodos , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Ciclo Celular/efectos de los fármacos , Quimiocina CXCL12/metabolismo , Descubrimiento de Drogas/métodos , Proteínas Hedgehog/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Activación Transcripcional/efectos de los fármacos
20.
Expert Rev Hematol ; 8(1): 29-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25374305

RESUMEN

STAT3 is important for transcriptional regulation in human acute myeloid leukemia (AML). STAT3 has thousands of potential DNA binding sites but usually shows cell type specific binding preferences to a limited number of these. Furthermore, AML is a very heterogeneous disease, and studies of the prognostic impact of STAT3 in human AML have also given conflicting results. A more detailed characterization of STAT3 functions and the expression of various isoforms in human AML will therefore be required before it is possible to design clinical studies of STAT3 inhibitors in this disease, and it will be especially important to investigate whether the functions of STAT3 differ between patients. Several other malignancies also show extensive biological heterogeneity, and the present discussion and the suggested scientific approaches may thus be relevant for other cancer patients.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Factor de Transcripción STAT3/metabolismo , Animales , Humanos , Leucemia Mieloide Aguda/genética , Terapia Molecular Dirigida , Pronóstico , Factor de Transcripción STAT3/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...