Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(1): e0253221, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080421

RESUMEN

Canine distemper virus (CDV) and Canine parvovirus (CPV) can cause deadly infections in wildlife and companion animals. In this report, we screened serum from free-ranging eastern coyotes (Canis latrans; N = 268), red foxes (Vulpes vulpes; N = 63), and gray foxes (Urocyon cinereoargenteus; N = 16) from Pennsylvania, USA, for antibodies (Abs) to CDV and CPV. This comprehensive screening was achieved using a commercially available enzyme-linked immunosorbent assay (ELISA)-based colorimetric assay. Abs to CDV and CPV were detected in 25.4% and 45.5% of coyotes, 36.5% and 52.4% of red foxes, and 12.5% and 68.8% of gray foxes, respectively. Abs to both viruses were detected in 9.7% of coyotes, 19.1% of red foxes, and 12.5% of gray foxes. This study demonstrates significant wildlife exposure in a northeastern state to CDV and CPV. As wildlife species continue to urbanize, the probability of spillover between domestic animals and wildlife will increase. Ongoing surveillance of wildlife for CDV and CPV exposure is warranted. IMPORTANCECanine distemper virus (CDV) and Canine parvovirus (CPV) are significant health threats to domestic dogs (Canis familiaris) and wildlife. CDV and CPV have been identified in diverse vertebrates, including endangered wildlife species. Susceptibility to these viral pathogens varies significantly among geographic regions and between host species. High morbidity and mortality have been reported with infection by either virus in susceptible species, including dogs. As humans and companion animals encroach on wildlife habitat, and as wildlife becomes increasingly urbanized, the potential for transmission between species increases. This study assessed CPV and CDV Ab prevalence in wild canids (eastern coyotes, red foxes, and gray foxes) harvested in Pennsylvania between 2015 and 2020. High Ab prevalence was demonstrated for both viruses in each species. Ongoing monitoring of CPV and CDV in wildlife and increased efforts to vaccinate dogs and prevent spillover events are essential.


Asunto(s)
Coyotes/virología , Reservorios de Enfermedades/virología , Virus del Moquillo Canino/aislamiento & purificación , Enfermedades de los Perros/virología , Zorros/virología , Infecciones por Parvoviridae/veterinaria , Animales , Animales Salvajes/virología , Anticuerpos Antivirales/sangre , Coyotes/sangre , Virus del Moquillo Canino/clasificación , Virus del Moquillo Canino/genética , Virus del Moquillo Canino/inmunología , Enfermedades de los Perros/transmisión , Perros , Ensayo de Inmunoadsorción Enzimática , Zorros/sangre , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/transmisión , Infecciones por Parvoviridae/virología , Parvovirus Canino/clasificación , Parvovirus Canino/genética , Parvovirus Canino/aislamiento & purificación , Pennsylvania
2.
mBio ; 12(4): e0181621, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34340535

RESUMEN

Orientia tsutsugamushi is the etiologic agent of scrub typhus, the deadliest of all diseases caused by obligate intracellular bacteria. Nucleomodulins, bacterial effectors that dysregulate eukaryotic transcription, are being increasingly recognized as key virulence factors. How they translocate into the nucleus and their functionally essential domains are poorly defined. We demonstrate that Ank13, an O. tsutsugamushi effector conserved among clinical isolates and expressed during infection, localizes to the nucleus in an importin ß1-independent manner. Rather, Ank13 nucleotropism requires an isoleucine at the thirteenth position of its fourth ankyrin repeat, consistent with utilization of eukaryotic RaDAR (RanGDP-ankyrin repeats) nuclear import. RNA-seq analyses of cells expressing green fluorescent protein (GFP)-tagged Ank13, nucleotropism-deficient Ank13I127R, or Ank13ΔF-box, which lacks the F-box domain essential for interacting with SCF ubiquitin ligase, revealed Ank13 to be a nucleomodulin that predominantly downregulates transcription of more than 2,000 genes. Its ability to do so involves its nucleotropism and F-box in synergistic and mutually exclusive manners. Ank13 also acts in the cytoplasm to dysregulate smaller cohorts of genes. The effector's toxicity in yeast heavily depends on its F-box and less so on its nucleotropism. Genes negatively regulated by Ank13 include those involved in the inflammatory response, transcriptional control, and epigenetics. Importantly, the majority of genes that GFP-Ank13 most strongly downregulates are quiescent or repressed in O. tsutsugamushi-infected cells when Ank13 expression is strongest. Ank13 is the first nucleomodulin identified to coopt RaDAR and a multifaceted effector that functions in the nucleus and cytoplasm via F-box-dependent and -independent mechanisms to globally reprogram host cell transcription. IMPORTANCE Nucleomodulins are recently defined effectors used by diverse intracellular bacteria to manipulate eukaryotic gene expression and convert host cells into hospitable niches. How nucleomodulins enter the nucleus, their functional domains, and the genes that they modulate are incompletely characterized. Orientia tsutsugamushi is an intracellular bacterial pathogen that causes scrub typhus, which can be fatal. O. tsutsugamushi Ank13 is the first example of a microbial protein that coopts eukaryotic RaDAR (RanGDP-ankyrin repeats) nuclear import. It dysregulates expression of a multitude of host genes with those involved in transcriptional control and the inflammatory response being among the most prominent. Ank13 does so via mechanisms that are dependent and independent of both its nucleotropism and eukaryotic-like F-box domain that interfaces with ubiquitin ligase machinery. Nearly all the genes most strongly downregulated by ectopically expressed Ank13 are repressed in O. tsutsugamushi-infected cells, implicating its importance for intracellular colonization and scrub typhus molecular pathogenesis.


Asunto(s)
Ancirinas/genética , Proteínas Bacterianas/genética , Núcleo Celular/metabolismo , Orientia tsutsugamushi/genética , Transcripción Genética , Transporte Activo de Núcleo Celular , Ancirinas/metabolismo , Proteínas Bacterianas/metabolismo , Células HeLa , Humanos , Orientia tsutsugamushi/metabolismo
3.
Curr Issues Mol Biol ; 42: 191-222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33289681

RESUMEN

Lyme disease (LD) is an emerging zoonotic infection that is increasing in incidence in North America, Europe, and Asia. With the development of safe and efficacious vaccines, LD can potentially be prevented. Vaccination offers a cost-effective and safe approach for decreasing the risk of infection. While LD vaccines have been widely used in veterinary medicine, they are not available as a preventive tool for humans. Central to the development of effective vaccines is an understanding of the enzootic cycle of LD, differential gene expression of Borrelia burgdorferi in response to environmental variables, and the genetic and antigenic diversity of the unique bacteria that cause this debilitating disease. Here we review these areas as they pertain to past and present efforts to develop human, veterinary, and reservoir targeting LD vaccines. In addition, we offer a brief overview of additional preventative measures that should employed in conjunction with vaccination.


Asunto(s)
Vacunas contra Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/prevención & control , Animales , Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Reservorios de Enfermedades/microbiología , Susceptibilidad a Enfermedades , Salud Global , Humanos , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/transmisión , Vacunas contra Enfermedad de Lyme/administración & dosificación , Vigilancia de la Población , Vacunación
4.
mSphere ; 5(4)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32817454

RESUMEN

Lyme disease and anaplasmosis are tick-borne bacterial diseases caused by Borreliella and Anaplasma species, respectively. A comprehensive analysis of the exposure of eastern coyotes (Canis latrans) in the northeastern United States to tick-borne pathogens has not been conducted. In this report, we assess the serological status of 128 eastern coyotes harvested in Pennsylvania in 2015 and 2017 for antibodies to Borreliella burgdorferi and Anaplasma phagocytophilum Immunoblot and dot blot approaches were employed to test each plasma sample by using cell lysates and recombinant proteins as detection antigens. The results demonstrate high seropositivity incidences of 64.8% and 72.7% for B. burgdorferi and A. phagocytophilum, respectively. Antibodies to both pathogens were detected in 51.5% of the plasma samples, indicating high potential for coinfection. Antibodies to the B. burgdorferi proteins DbpB, VlsE, DbpA, BBA36, and OspF (BBO39) were detected in 67.2, 63.3, 56.2, 51.6, and 48.4% of the plasma samples, respectively. Antibodies to the A. phagocytophilum P44 and P130 proteins were detected in 72.7 and 60.9% of the plasma samples, respectively.IMPORTANCE The incidence of Lyme disease (Borreliella burgdorferi) and anaplasmosis (Anaplasma phagocytophilum) are increasing in North America and Europe. The causative agents of these debilitating tick-transmitted infections are maintained in nature in an enzootic cycle involving Ixodes ticks and diverse mammals and birds. It has been postulated that predators directly or indirectly influence the dynamics of the enzootic cycle and disease incidence. Here, we demonstrate high seropositivity of eastern coyotes for B. burgdorferi and A. phagocytophilum As coyotes become established in urban and suburban environments, interactions with humans, companion animals, and urban/suburban wildlife will increase. Knowledge of the pathogens that these highly adaptable predators are exposed to or carry, and their potential to influence or participate in enzootic cycles, is central to efforts to reduce the risk of tick-borne diseases in humans and companion animals.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Coyotes/microbiología , Ehrlichiosis/veterinaria , Ixodes/microbiología , Enfermedad de Lyme/veterinaria , Enfermedades por Picaduras de Garrapatas/veterinaria , Anaplasma phagocytophilum/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Borrelia burgdorferi/genética , Coyotes/inmunología , Ehrlichiosis/epidemiología , Femenino , Enfermedad de Lyme/epidemiología , Masculino , Pennsylvania/epidemiología , Pruebas Serológicas , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA