Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 182(1): 566-583, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31611421

RESUMEN

The Australian grass subtribe Neurachninae contains closely related species that use C3, C4, and C2 photosynthesis. To gain insight into the evolution of C4 photosynthesis in grasses, we examined leaf gas exchange, anatomy and ultrastructure, and tissue localization of Gly decarboxylase subunit P (GLDP) in nine Neurachninae species. We identified previously unrecognized variation in leaf structure and physiology within Neurachne that represents varying degrees of C3-C4 intermediacy in the Neurachninae. These include inverse correlations between the apparent photosynthetic carbon dioxide (CO2) compensation point in the absence of day respiration (C * ) and chloroplast and mitochondrial investment in the mestome sheath (MS), where CO2 is concentrated in C2 and C4 Neurachne species; width of the MS cells; frequency of plasmodesmata in the MS cell walls adjoining the parenchymatous bundle sheath; and the proportion of leaf GLDP invested in the MS tissue. Less than 12% of the leaf GLDP was allocated to the MS of completely C3 Neurachninae species with C * values of 56-61 µmol mol-1, whereas two-thirds of leaf GLDP was in the MS of Neurachne lanigera, which exhibits a newly-identified, partial C2 phenotype with C * of 44 µmol mol-1 Increased investment of GLDP in MS tissue of the C2 species was attributed to more MS mitochondria and less GLDP in mesophyll mitochondria. These results are consistent with a model where C4 evolution in Neurachninae initially occurred via an increase in organelle and GLDP content in MS cells, which generated a sink for photorespired CO2 in MS tissues.


Asunto(s)
Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Plasmodesmos/metabolismo , Plasmodesmos/fisiología , Poaceae/genética , Poaceae/fisiología
2.
Plant Cell Environ ; 39(9): 1874-85, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26524631

RESUMEN

C4 photosynthesis is a complex trait resulting from a series of anatomical and biochemical modifications to the ancestral C3 pathway. It is thought to evolve in a stepwise manner, creating intermediates with different combinations of C4 -like components. Determining the adaptive value of these components is key to understanding how C4 photosynthesis can gradually assemble through natural selection. Here, we decompose the photosynthetic phenotypes of numerous individuals of the grass Alloteropsis semialata, the only species known to include both C3 and C4 genotypes. Analyses of δ(13) C, physiology and leaf anatomy demonstrate for the first time the existence of physiological C3 -C4 intermediate individuals in the species. Based on previous phylogenetic analyses, the C3 -C4 individuals are not hybrids between the C3 and C4 genotypes analysed, but instead belong to a distinct genetic lineage, and might have given rise to C4 descendants. C3 A. semialata, present in colder climates, likely represents a reversal from a C3 -C4 intermediate state, indicating that, unlike C4 photosynthesis, evolution of the C3 -C4 phenotype is not irreversible.


Asunto(s)
Evolución Biológica , Fotosíntesis , Poaceae/metabolismo , Isótopos de Carbono/metabolismo , Hojas de la Planta/anatomía & histología , Poaceae/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
J Exp Bot ; 63(17): 6297-308, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23077201

RESUMEN

The Neurachninae is the only grass lineage known to contain C(3), C(4), and C(3)-C(4) intermediate species, and as such has been suggested as a model system for studies of photosynthetic pathway evolution in the Poaceae; however, a lack of a robust phylogenetic framework has hindered this possibility. In this study, plastid and nuclear markers were used to reconstruct evolutionary relationships among Neurachninae species. In addition, photosynthetic types were determined with carbon isotope ratios, and genome sizes with flow cytometry. A high frequency of autopolyploidy was found in the Neurachninae, including in Neurachne munroi F.Muell. and Paraneurachne muelleri S.T.Blake, which independently evolved C(4) photosynthesis. Phylogenetic analyses also showed that following their separate C(4) origins, these two taxa exchanged a gene encoding the C(4) form of phosphoenolpyruvate carboxylase. The C(3)-C(4) intermediate Neurachne minor S.T.Blake is phylogenetically distinct from the two C(4) lineages, indicating that intermediacy in this species evolved separately from transitional stages preceding C(4) origins. The Neurachninae shows a substantial capacity to evolve new photosynthetic pathways repeatedly. Enablers of these transitions might include anatomical pre-conditions in the C(3) ancestor, and frequent autopolyploidization. Transfer of key C(4) genetic elements between independently evolved C(4) taxa may have also facilitated a rapid adaptation of photosynthesis in these grasses that had to survive in the harsh climate appearing during the late Pliocene in Australia.


Asunto(s)
Evolución Biológica , Transferencia de Gen Horizontal , Fotosíntesis/genética , Poaceae/genética , Poliploidía , Isótopos de Carbono/análisis , Núcleo Celular/genética , Marcadores Genéticos , Tamaño del Genoma , Filogenia , Hojas de la Planta/clasificación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Plastidios/genética , Poaceae/clasificación , Poaceae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...