Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Phys Chem Lett ; 14(47): 10664-10669, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37988084

RESUMEN

Ice IV is a metastable high-pressure phase of ice in which the water molecules exhibit orientational disorder. Although orientational ordering is commonly observed for other ice phases, it has not been reported for ice IV. We conducted in situ powder neutron diffraction experiments for DCl-doped D2O ice IV to investigate its hydrogen ordering. We found abrupt changes in the temperature derivative of unit-cell volume, dV/dT, at ∼120 K, and revealed a slightly ordered structure at low temperatures based on the Rietveld method. The occupancy of the D1 site deviates from 0.5 in particular; it increased when samples were cooled at higher pressures and reached 0.174(14) at 2.38 GPa, 58 K. Our results evidence the presence of a low-symmetry hydrogen-ordered state corresponding to ice IV. It seems, however, difficult to experimentally access the completely ordered phase corresponding to ice IV by slow cooling at high pressure.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 5): 414-426, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703290

RESUMEN

The structure of a recently found hyperhydrated form of sodium chloride (NaCl·13H2O and NaCl·13D2O) has been determined by in situ single-crystal neutron diffraction at 1.7 GPa and 298 K. It has large hydrogen-bond networks and some water molecules have distorted bonding features such as bifurcated hydrogen bonds and five-coordinated water molecules. The hydrogen-bond network has similarities to ice VI in terms of network topology and disordered hydrogen bonds. Assuming the equivalence of network components connected by pseudo-symmetries, the overall network structure of this hydrate can be expressed by breaking it down into smaller structural units which correspond to the ice VI network structure. This hydrogen-bond network contains orientational disorder of water molecules in contrast to the known salt hydrates. An example is presented here for further insights into a hydrogen-bond network containing ionic species.

3.
Mater Horiz ; 10(3): 977-982, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36637149

RESUMEN

As a promising environment-friendly alternative to current vapor-compression refrigeration, solid-state refrigeration based on the barocaloric effect has been attracting worldwide attention. Generally, both phases in which a barocaloric effect occurs are present at ambient pressure. Here, instead, we demonstrate that KPF6 exhibits a colossal barocaloric effect due to the creation of a high-pressure rhombohedral phase. The phase diagram is constructed based on pressure-dependent calorimetric, Raman scattering, and neutron diffraction measurements. The present study is expected to provide an alternative routine to colossal barocaloric effects through the creation of a high-pressure phase.

4.
Proc Natl Acad Sci U S A ; 119(40): e2208717119, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161890

RESUMEN

Ice polymorphs show extraordinary structural diversity depending on pressure and temperature. The behavior of hydrogen-bond disorder not only is a key ingredient for their structural diversity but also controls their physical properties. However, it has been a challenge to determine the details of the disordered structure in ice polymorphs under pressure, because of the limited observable reciprocal space and inaccuracies related to high-pressure techniques. Here, we present an elucidation of the disordered structure of ice VII, the dominant high-pressure form of water, at 2.2 GPa and 298 K, from both single-crystal and powder neutron-diffraction techniques. We reveal the three-dimensional atomic distributions from the maximum entropy method and unexpectedly find a ring-like distribution of hydrogen in contrast to the commonly accepted discrete sites. In addition, total scattering analysis at 274 K clarified the difference in the intermolecular structure from ice VIII, the ordered counterpart of ice VII, despite an identical molecular geometry. Our complementary structure analyses robustly demonstrate the unique disordered structure of ice VII. Furthermore, these findings are related to proton dynamics, which drastically vary with pressure, and will contribute to an understanding of the structural origin of anomalous physical properties of ice VII under pressures.

5.
J Phys Chem Lett ; 12(50): 12055-12061, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34905378

RESUMEN

Substituted polyacetylene is expected to improve the chemical stability, physical properties, and combine new functions to the polyacetylene backbones, but its diversity is very limited. Here, by applying external pressure on solid acetylenedicarboxylic acid, we report the first crystalline poly-dicarboxylacetylene with every carbon on the trans-polyacetylene backbone bonded to a carboxyl group, which is very hard to synthesize by traditional methods. The polymerization is evidenced to be a topochemical reaction with the help of hydrogen bonds. This unique structure combines the extremely high content of carbonyl groups and high conductivity of a polyacetylene backbone, which exhibits a high specific capacity and excellent cycling/rate performance as a Li-ion battery (LIB) anode. We present a completely functionalized crystalline polyacetylene and provide a high-pressure solution for the synthesis of polymeric LIB materials and other polymeric materials with a high content of active groups.

6.
Phys Chem Chem Phys ; 23(35): 19503-19510, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524305

RESUMEN

The pressure-induced phase transition and polymerization of nitrogen-rich molecules are widely focused on due to their extreme importance for the development of green high-energy-density materials. Here, we present a study of the phase-transition behaviour and chemical reaction of 1H-tetrazole up to 100 GPa using in situ Raman, IR, X-ray diffraction, neutron diffraction techniques and theoretical calculations. A phase transition above 2.6 GPa was identified and the high-pressure structure was determined with one molecule in a unit cell instead of two molecules as reported before. The 1H-tetrazole polymerized reversibly below 100 GPa, probably through carbon-nitrogen bonding instead of nitrogen-nitrogen bonding. Our studies update the structure model of the high-pressure phase of 1H-tetrazole, and present the possible intermolecular bonding route for the first time, which gives new insights to understand the phase transition and chemical reaction of nitrogen-rich compounds, and is of benefit for designing new high-energy-density materials.

7.
Sci Rep ; 11(1): 12632, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168164

RESUMEN

Hydrogen (H) is considered to be one of the candidates for light elements in the Earth's core, but the amount and timing of delivery have been unknown. We investigated the effects of sulfur (S), another candidate element in the core, on deuteration of iron (Fe) in iron-silicate-water system up to 6-12 GPa, ~ 1200 K using in situ neutron diffraction measurements. The sample initially contained saturated water (D2O) as Mg(OD)2 in the ideal composition (Fe-MgSiO3-D2O) of the primitive Earth. In the existence of water and sulfur, phase transitions of Fe, dehydration of Mg(OD)2, and formation of iron sulfide (FeS) and silicates occurred with increasing temperature. The deuterium (D) solubility (x) in iron deuterides (FeDx) increased with temperature and pressure, resulting in a maximum of x = 0.33(4) for the hydrous sample without S at 11.2 GPa and 1067 K. FeS was hardly deuterated until Fe deuteration had completed. The lower D concentrations in the S-containing system do not exceed the miscibility gap (x < ~ 0.4). Both H and S can be incorporated into solid Fe and other light elements could have dissolved into molten iron hydride and/or FeS during the later process of Earth's evolution.

8.
Molecules ; 26(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668744

RESUMEN

Total scattering structure factors of per-deuterated methanol and heavy water, CD3OD and D2O, have been determined across the entire composition range as a function of pressure up to 1.2 GPa, by neutron diffraction. The largest variations due to increasing pressure were observed below a scattering variable value of 5 Å-1, mostly as shifts in terms of the positions of the first and second maxima. Molecular dynamics computer simulations, using combinations of all-atom potentials for methanol and various water force fields, were conducted at the experimental pressures with the aim of interpreting neutron diffraction results. The peak-position shifts mentioned above could be qualitatively reproduced by simulations, although in terms of peak intensities, the accord between neutron diffraction and molecular dynamics was much less satisfactory. However, bearing in mind that increasing pressure must have a profound effect on repulsive forces between neighboring molecules, the agreement between experiment and computer simulation can certainly be termed as satisfactory. In order to reveal the influence of changing pressure on local intermolecular structure in these "simplest of complex" hydrogen-bonded liquid mixtures, simulated structures were analyzed in terms of hydrogen bond-related partial radial distribution functions and size distributions of hydrogen-bonded cyclic entities. Distinct differences between pressure-dependent structures of water-rich and methanol-rich composition regions were revealed.


Asunto(s)
Óxido de Deuterio/química , Metanol/química , Simulación de Dinámica Molecular , Enlace de Hidrógeno , Estructura Molecular , Difracción de Neutrones , Presión
10.
Nat Commun ; 12(1): 1129, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602936

RESUMEN

Ice exhibits extraordinary structural variety in its polymorphic structures. The existence of a new form of diversity in ice polymorphism has recently been debated in both experimental and theoretical studies, questioning whether hydrogen-disordered ice can transform into multiple hydrogen-ordered phases, contrary to the known one-to-one correspondence between disordered ice and its ordered phase. Here, we report a high-pressure phase, ice XIX, which is a second hydrogen-partially-ordered phase of ice VI. We demonstrate that disordered ice undergoes different manners of hydrogen ordering, which are thermodynamically controlled by pressure in the case of ice VI. Such multiplicity can appear in all disordered ice, and it widely provides a research approach to deepen our knowledge, for example of the crucial issues of ice: the centrosymmetry of hydrogen-ordered configurations and potentially induced (anti-)ferroelectricity. Ultimately, this research opens up the possibility of completing the phase diagram of ice.

11.
Inorg Chem ; 60(5): 3065-3073, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33587625

RESUMEN

High-pressure X-ray and neutron diffraction analyses of an ambient-pressure phase (AP) and two high-pressure phases (HP1 and HP2) of ammonia borane (i.e., NH3BH3 and ND3BD3) were conducted to investigate the relationship between their crystal structures and dihydrogen bonds. It was confirmed that the hydrogen atoms in AP formed dihydrogen bonds between adjacent molecules, and the H-H distance between the hydrogen atoms forming this interaction was shorter than 2.4 Å, which was nearly 2 times larger than the van der Waals radius of hydrogen. In the case of half of the hydrogen bonds, a phase transition from AP to the first high-pressure phase (HP1) at ∼1.2 GPa resulted in an increase in the H-H distances, which suggested that the dihydrogen bonds were broken. However, when HP1 was further pressurized to ∼4 GPa, all of the H-H distances became shorter than 2.4 Å again, which implied the occurrence of pressure-induced re-formation of the dihydrogen bonds. It was speculated that the re-formation was consistent with a second-order phase transition suggested in previous studies by Raman spectroscopy and X-ray diffraction measurement. Furthermore, at ∼11 GPa, HP1 transformed to the second high-pressure phase (HP2), and its structure was determined to be P21 (Z = 2). In this phase transition, the inclination of the molecule axis became larger, and the number of types of dihydrogen bonds increased from 6 to 11. At 18.9 GPa, which was close to the upper pressure limit of HP2, the shortest dihydrogen bond decreased to ∼1.65 Å. Additionally, the X-ray diffraction results suggested another phase transition to the third high-pressure phase (HP3) at ∼20 GPa. The outcomes of this study confirmed experimentally for the first time that the structural change under pressure causes the breakage and re-formation of the dihydrogen bonds of NH3BH3.

12.
J Am Chem Soc ; 142(41): 17662-17669, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32900188

RESUMEN

Solid-state topochemical polymerization (SSTP) is a promising method to construct functional crystalline polymeric materials, but in contrast to various reactions that happen in solution, only very limited types of SSTP reactions are reported. Diels-Alder (DA) and dehydro-DA (DDA) reactions are textbook reactions for preparing six-membered rings in solution but are scarcely seen in solid-state synthesis. Here, using multiple cutting-edge techniques, we demonstrate that the solid 1,4-diphenylbutadiyne (DPB) undergoes a DDA reaction under 10-20 GPa with the phenyl as the dienophile. The crystal structure at the critical pressure shows that this reaction is "distance-selected". The distance of 3.2 Å between the phenyl and the phenylethynyl facilitates the DDA reaction, while the distances for other DDA and 1,4-addition reactions are too large to allow the bonding. The obtained products are crystalline armchair graphitic nanoribbons, and hence our studies open a new route to construct the crystalline carbon materials with atomic-scale control.

13.
J Chem Phys ; 153(1): 014704, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32640806

RESUMEN

The structure refinement of black phosphorus was performed at pressures of up to 3.2 GPa at room temperature by powder neutron diffraction techniques. The bond lengths and bond angles between the phosphorus atoms at pressures were precisely determined and confirmed to be consistent with those of the previous single crystal x-ray analysis [A. Brown and S. Rundqvist, Acta Cryst. 19, 684 (1965)]. Although the lattice parameters exhibited an anisotropic compressibility, the covalent P1-P2 and P1-P3 bond lengths were almost independent of pressure and only the P3-P1-P2 bond angle was reduced significantly. On the basis of our results, the significant discrepancy in the bond length reported by Cartz et al. [J. Chem. Phys. 71, 1718 (1979)] has been resolved. Our structural data will contribute to the elucidation of the Dirac semimetal state of black phosphorus under high pressure.

14.
Sci Rep ; 10(1): 9934, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32555226

RESUMEN

Neutron powder diffraction profiles were collected for iron deuteride (FeDx) while the temperature decreased from 1023 to 300 K for a pressure range of 4-6 gigapascal (GPa). The ε' deuteride with a double hexagonal close-packed (dhcp) structure, which coexisted with other stable or metastable deutrides at each temperature and pressure condition, formed solid solutions with a composition of FeD0.68(1) at 673 K and 6.1 GPa and FeD0.74(1) at 603 K and 4.8 GPa. Upon stepwise cooling to 300 K, the D-content x increased to a stoichiometric value of 1.0 to form monodeuteride FeD1.0. In the dhcp FeD1.0 at 300 K and 4.2 GPa, dissolved D atoms fully occupied the octahedral interstitial sites, slightly displaced from the octahedral centers in the dhcp metal lattice, and the dhcp sequence of close-packed Fe planes contained hcp-stacking faults at 12%. Magnetic moments with 2.11 ± 0.06 µB/Fe-atom aligned ferromagnetically in parallel on the Fe planes.

15.
Proc Natl Acad Sci U S A ; 117(12): 6356-6361, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32161135

RESUMEN

Above 2 GPa the phase diagram of water simplifies considerably and exhibits only two solid phases up to 60 GPa, ice VII and ice VIII. The two phases are related to each other by hydrogen ordering, with the oxygen sublattice being essentially the same. Here we present neutron diffraction data to 15 GPa which reveal that the rate of hydrogen ordering at the ice VII-VIII transition decreases strongly with pressure to reach timescales of minutes at 10 GPa. Surprisingly, the ordering process becomes more rapid again upon further compression. We show that such an unusual change in transition rate can be explained by a slowing down of the rotational dynamics of water molecules with a simultaneous increase of translational motion of hydrogen under pressure, as previously suspected. The observed cross-over in the hydrogen dynamics in ice is likely the origin of various hitherto unexplained anomalies of ice VII in the 10-15 GPa range reported by Raman spectroscopy, X-ray diffraction, and proton conductivity.

16.
Nat Commun ; 11(1): 464, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015342

RESUMEN

Water freezes below 0 °C at ambient pressure ordinarily to ice Ih, with hexagonal stacking sequence. Under certain conditions, ice with a cubic stacking sequence can also be formed, but ideal ice Ic without stacking-disorder has never been formed until recently. Here we demonstrate a route to obtain ice Ic without stacking-disorder by degassing hydrogen from the high-pressure form of hydrogen hydrate, C2, which has a host framework isostructural with ice Ic. The stacking-disorder free ice Ic is formed from C2 via an intermediate amorphous or nano-crystalline form under decompression, unlike the direct transformations occurring in ice XVI from neon hydrate, or ice XVII from hydrogen hydrate. The obtained ice Ic shows remarkable thermal stability, until the phase transition to ice Ih at 250 K, originating from the lack of dislocations. This discovery of ideal ice Ic will promote understanding of the role of stacking-disorder on the physical properties of ice as a counter end-member of ice Ih.

17.
Acta Crystallogr C Struct Chem ; 75(Pt 12): 1605-1612, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31802749

RESUMEN

A high-pressure phase of magnesium chloride hexahydrate (MgCl2·6H2O-II) and its deuterated counterpart (MgCl2·6D2O-II) have been identified for the first time by in-situ single-crystal X-ray and powder neutron diffraction. The crystal structure was analyzed by the Rietveld method for the neutron diffraction pattern based on the initial structure determined by single-crystal X-ray diffraction. This high-pressure phase has a similar framework to that in the known ambient-pressure phase, but exhibits some structural changes with symmetry reduction caused by a subtle modification in the hydrogen-bond network around the Mg(H2O)6 octahedra. These structural features reflect the strain in the high-pressure phases of MgCl2 hydrates.

18.
Sci Rep ; 9(1): 12290, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444386

RESUMEN

Hexagonal close-packed iron hydride, hcp FeHx, is absent from the conventional phase diagram of the Fe-H system, although hcp metallic Fe exists stably over extensive temperature (T) and pressure (P) conditions, including those corresponding to the Earth's inner core. In situ X-ray and neutron diffraction measurements at temperatures ranging from 298 to 1073 K and H pressures ranging from 4 to 7 GPa revealed that the hcp hydride was formed for FeHx compositions when x < 0.6. Hydrogen atoms occupied the octahedral interstitial sites of the host metal lattice both partially and randomly. The hcp hydride exhibited a H-induced volume expansion of 2.48(5) Å3/H-atom, which was larger than that of the face-centered cubic (fcc) hydride. The hcp hydride showed an increase in x with T, whereas the fcc hydride showed a corresponding decrease. The present study provides guidance for further investigations of the Fe-H system over an extensive x-T-P region.

19.
Pathol Int ; 69(6): 319-330, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31290583

RESUMEN

Barrett's esophagus is considered a precancerous lesion of esophageal adenocarcinoma (EAC). Long-segment Barrett's esophagus, which is generally associated with intestinal metaplasia, has a higher rate of carcinogenesis than short-segment Barrett's esophagus, which is mainly composed of cardiac-type mucosa. However, a large number of cases reportedly develop EAC from the cardiac-type mucosa which has the potential to involve intestinal phenotypes. There is no consensus regarding whether the definition of Barrett's epithelium should include intestinal metaplasia. Basic researches using rodent models have provided information regarding the origins of Barrett's epithelium. Nevertheless, it remains unclear whether differentiated gastric columnar epithelium or stratified esophageal squamous epithelium undergo transdifferentiation into the intestinal-type columnar epithelium, transcommittment into the columnar epithelium, or whether the other pathways exist. Reflux of duodenal fluid including bile acids into the stomach may occur when an individual lies down after eating, which could cause the digestive juices to collect in the fornix of the stomach. N-nitroso-bile acids are produced with nitrites that are secreted from the salivary glands, and bile acids can drive expression of pro-inflammatory cytokines via EGFR or the NF-κB pathway. These steps may contribute significantly to carcinogenesis.


Asunto(s)
Esófago de Barrett/patología , Esófago/patología , Reflujo Gastroesofágico/fisiopatología , Metaplasia/patología , Esófago de Barrett/complicaciones , Carcinogénesis/patología , Humanos , Estómago/patología
20.
Sci Rep ; 9(1): 7108, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068634

RESUMEN

Hydrogen is likely one of the light elements in the Earth's core. Despite its importance, no direct observation has been made of hydrogen in an iron lattice at high pressure. We made the first direct determination of site occupancy and volume of interstitial hydrogen in a face-centered cubic (fcc) iron lattice up to 12 GPa and 1200 K using the in situ neutron diffraction method. The transition temperatures from the body-centered cubic and the double-hexagonal close-packed phases to the fcc phase were higher than reported previously. At pressures <5 GPa, the hydrogen content in the fcc iron hydride lattice (x) was small at x < 0.3, but increased to x > 0.8 with increasing pressure. Hydrogen atoms occupy both octahedral (O) and tetrahedral (T) sites; typically 0.870(±0.047) in O-sites and 0.057(±0.035) in T-sites at 12 GPa and 1200 K. The fcc lattice expanded approximately linearly at a rate of 2.22(±0.36) Å3 per hydrogen atom, which is higher than previously estimated (1.9 Å3/H). The lattice expansion by hydrogen dissolution was negligibly dependent on pressure. The large lattice expansion by interstitial hydrogen reduced the estimated hydrogen content in the Earth's core that accounted for the density deficit of the core. The revised analyses indicate that whole core may contain hydrogen of 80(±31) times of the ocean mass with 79(±30) and 0.8(±0.3) ocean mass for the outer and inner cores, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...