Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 14216, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848173

RESUMEN

Overheated outdoor environments adversely impact urban sustainability and livability. Urban areas are particularly affected by heat waves and global climate change, which is a serious threat due to increasing heat stress and thermal risk for residents. The tropical city of Darwin, Australia, for example, is especially susceptible to urban overheating that can kill inhabitants. Here, using a modeling platform supported by detailed measurements of meteorological data, we report the first quantified analysis of the urban microclimate and evaluate the impacts of heat mitigation technologies to decrease the ambient temperature in the city of Darwin. We present a holistic study that quantifies the benefits of city-scale heat mitigation to human health, energy consumption, and peak electricity demand. The best-performing mitigation scenario, which combines cool materials, shading, and greenery, reduces the peak ambient temperature by 2.7 °C and consequently decreases the peak electricity demand and the total annual cooling load by 2% and 7.2%, respectively. Further, the proposed heat mitigation approach can save 9.66 excess deaths per year per 100,000 people within the Darwin urban health district. Our results confirm the technological possibilities for urban heat mitigation, which serves as a strategy for mitigating the severity of cumulative threats to urban sustainability.

2.
Sci Total Environ ; 571: 603-14, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27432732

RESUMEN

Heatwaves are the most dangerous natural hazard to health in Australia. The frequency and intensity of heatwaves will increase due to climate change and urban heat island effects in cities, aggravating the negative impacts of heatwaves. Two approaches exist to develop population heat stress resilience. Firstly, the most vulnerable social groups can be identified and public health services can prepare for the increased morbidity. Secondly, the population level of adaptation and the heat stress resistance of the built environment can be increased. The evaluation of these measures and their efficiencies has been fragmented across research disciplines. This study explored the relationships between the elements of heat stress resilience and their potential demographic and housing drivers and barriers. The responses of a representative online survey (N=393) about heat stress resilience at home and work from Adelaide, South Australia were analysed. The empirical findings demonstrate that heat stress resistant buildings increased adaptation capacity and decreased the number of health problems. Air-conditioning increased dependence upon it, limited passive adaptation and only people living in homes with whole-house air-conditioning had less health problems during heatwaves. Tenants and respondents with pre-existing health conditions were the most vulnerable, particularly as those with health conditions were not aware of their vulnerability. The introduction of an Energy Performance Certificate is proposed and discussed as an effective incentive to increase the heat stress resistance of and the general knowledge about the built environment.


Asunto(s)
Planificación Ambiental , Calor , Vivienda , Lugar de Trabajo , Humanos , Australia del Sur
3.
Ecohealth ; 13(1): 100-10, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26695616

RESUMEN

Although heatwave-related excess mortality and morbidity have been widely studied, results are not comparable spatially and often longitudinally because of different heatwave definitions applied. The excess heat factor (EHF) quantifies heatwave intensity relative to the local climate, enabling cross-regional comparisons. Previous studies have shown a strong relationship between EHFs and daily mortality during severe heatwaves. An extensive study about the relationship between EHFs and daily morbidity compared to the currently applied heatwave thresholds in Adelaide has not yet been undertaken. This paper analyzes the association of EHFs with daily morbidity between 2008 and 2014 in the Adelaide metropolitan region, South Australia, and probes three different approaches to calculate the EHF. The EHF is found to differentiate days with heatwave-related excess morbidity significantly better than other widely used weather parameters, resulting in fewer days per year with heatwave alerts than using previously proposed methods. The volume of excess morbidity can be predicted by the EHF more reliably with a model proposed for the SA Ambulance Service to support their heatwave preparation plan.


Asunto(s)
Clima , Trastornos de Estrés por Calor/epidemiología , Humanos , Factores de Riesgo , Australia del Sur/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA