Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Patient Exp ; 9: 23743735221092615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402703

RESUMEN

Over the years, family-centered care in the field of pediatrics has become more prevalent and has improved the patient experience. Recent innovations within electronic health records (EHR), such as patient portals, have provided a more "patient-centered" approach by allowing patients to be interactive with the EHR and have greater agency of their own healthcare. There are also ample opportunities within an EHR to improve the patient experience with delivery of family-centered care. In this perspective, we discuss the design and use of a family-centered EHR for the purposes of optimizing the pediatric patient experience.

3.
J Invest Dermatol ; 142(6): 1650-1658.e6, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34757067

RESUMEN

Image-based analysis as a method for mutation detection can be advantageous in settings when tumor tissue is limited or unavailable for direct testing. In this study, we utilize two distinct and complementary machine-learning methods of analyzing whole-slide images for predicting mutated BRAF. In the first method, whole-slide images of melanomas from 256 patients were used to train a deep convolutional neural network to develop a fully automated model that first selects for tumor-rich areas (area under the curve = 0.96) and then predicts for mutated BRAF (area under the curve = 0.71). Saliency mapping was performed and revealed that pixels corresponding to nuclei were the most relevant to network learning. In the second method, whole-slide images were analyzed using a pathomics pipeline that first annotates nuclei and then quantifies nuclear features, showing that mutated BRAF nuclei were significantly larger and rounder than BRAF‒wild-type nuclei. Finally, we developed a model that combines clinical information, deep learning, and pathomics that improves the predictive performance for mutated BRAF to an area under the curve of 0.89. Not only does this provide additional insights on how BRAF mutations affect tumor structural characteristics, but machine learning‒based analysis of whole-slide images also has the potential to be integrated into higher-order models for understanding tumor biology.


Asunto(s)
Aprendizaje Profundo , Melanoma , Núcleo Celular/genética , Humanos , Melanoma/genética , Melanoma/patología , Mutación , Proteínas Proto-Oncogénicas B-raf/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...