Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7: 41242, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28120892

RESUMEN

Antimicrobial resistance to traditional antibiotics is a crucial challenge of medical research. Oligonucleotide therapeutics, such as antisense or Transcription Factor Decoys (TFDs), have the potential to circumvent current resistance mechanisms by acting on novel targets. However, their full translation into clinical application requires efficient delivery strategies and fundamental comprehension of their interaction with target bacterial cells. To address these points, we employed a novel cationic bolaamphiphile that binds TFDs with high affinity to form self-assembled complexes (nanoplexes). Confocal microscopy revealed that nanoplexes efficiently transfect bacterial cells, consistently with biological efficacy on animal models. To understand the factors affecting the delivery process, liposomes with varying compositions, taken as model synthetic bilayers, were challenged with nanoplexes and investigated with Scattering and Fluorescence techniques. Thanks to the combination of results on bacteria and synthetic membrane models we demonstrate for the first time that the prokaryotic-enriched anionic lipid Cardiolipin (CL) plays a key-role in the TFDs delivery to bacteria. Moreover, we can hypothesize an overall TFD delivery mechanism, where bacterial membrane reorganization with permeability increase and release of the TFD from the nanoplexes are the main factors. These results will be of great benefit to boost the development of oligonucleotides-based antimicrobials of superior efficacy.


Asunto(s)
Antiinfecciosos/farmacología , Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Modelos Biológicos , Nanopartículas/química , Animales , Células CACO-2 , Membrana Celular/efectos de los fármacos , Dispersión Dinámica de Luz , Escherichia coli/efectos de los fármacos , Fluoresceínas/metabolismo , Furanos/química , Humanos , Liposomas , Mesocricetus , Piridonas/química , Ratas Sprague-Dawley
2.
Colloids Surf B Biointerfaces ; 143: 139-147, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26998876

RESUMEN

Bacterial resistance to antimicrobials is a global threat that requires development of innovative therapeutics that circumvent its onset. The use of Transcription Factor Decoys (TFDs), DNA fragments that act by blocking essential transcription factors in microbes, represents a very promising approach. TFDs require appropriate carriers to protect them from degradation in biological fluids and transfect them through the bacterial cell wall into the cytoplasm, their site of action. Here we report on a bolaform cationic surfactant, [12-bis-THA]Cl2, with proven transfection activity in vivo. By studying the physical-chemical properties of its aqueous solutions with light scattering, cryo-TEM, ζ-potential, absorption and fluorescence spectroscopies, we prove that the bolaamphiphiles associate into transient vesicles which convert into one-dimensional elongated structures over time. These surfactant assemblies complex TFDs with extremely high efficiency, if compared to common cationic amphiphiles. At Z+/-=11, the nanoplexes are stable and have a size of 120nm, and they form independently of the original morphology of the [12-bis-THA]Cl2 aggregate. DNA is compacted in the nanoplexes, as shown through CD spectroscopy and fluorescence, but is readily released in its native form if sodium taurocholate is added.


Asunto(s)
Antiinfecciosos/química , ADN/química , Furanos/química , Oligonucleótidos/química , Piridonas/química , Tensoactivos/química , Tacrina/análogos & derivados , Proteínas Bacterianas/antagonistas & inhibidores , Sitios de Unión , Conformación de Ácido Nucleico , Unión Proteica , Ácido Taurocólico/química , Factores de Transcripción/antagonistas & inhibidores , Transfección
3.
FEBS Lett ; 585(3): 478-84, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21237157

RESUMEN

The twin arginine protein transport (Tat) system transports folded proteins across cytoplasmic membranes of bacteria and thylakoid membranes of plants, and in Escherichia coli it comprises TatA, TatB and TatC components. In this study we show that the membrane extrinsic domain of TatB forms parallel contacts with at least one other TatB protein. Truncation of the C-terminal two thirds of TatB still allows complex formation with TatC, although protein transport is severely compromised. We were unable to isolate transport-inactive single codon substitution mutations in tatB suggesting that the precise amino acid sequence of TatB is not critical to its function.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Codón , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporteros , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Transporte de Proteínas/genética , Proteínas Recombinantes de Fusión/metabolismo , Vías Secretoras , Técnicas del Sistema de Dos Híbridos
4.
Microbiology (Reading) ; 155(Pt 12): 3992-4004, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19778964

RESUMEN

The twin-arginine translocation (Tat) pathway is a prokaryotic protein targeting system dedicated to the transmembrane translocation of folded proteins. Substrate proteins are directed to the Tat translocase by signal peptides bearing a conserved SRRxFLK 'twin-arginine' motif. In Escherichia coli, most of the 27 periplasmically located Tat substrates are cofactor-containing respiratory enzymes, and many of these harbour a molybdenum cofactor at their active site. Molybdenum cofactor-containing proteins are not exclusively located in the periplasm, however, with the major respiratory nitrate reductase (NarG) and the biotin sulfoxide reductase (BisC), for example, being located at the cytoplasmic side of the membrane. Interestingly, both NarG and BisC contain 'N-tail' regions that bear some sequence similarity to twin-arginine signal peptides. In this work, we have examined the relationship between the non-exported N-tails and the Tat system. Using a sensitive genetic screen for Tat transport, variant N-tails were identified that displayed Tat transport activity. For the NarG 36-residue N-tail, six amino acid changes were needed to induce transport activity. However, these changes interfered with binding by the NarJ biosynthetic chaperone and impaired biosynthesis of the native enzyme. For the BisC 36-residue N-tail, only five amino acid substitutions were needed to restore Tat transport activity. These modifications also impaired in vivo BisC activity, but it was not possible to identify a biosynthetic chaperone for this enzyme. These data highlight an intimate genetic and evolutionary link between some non-exported redox enzymes and those transported across membranes by the Tat translocation system.


Asunto(s)
Transporte de Electrón/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Señales de Clasificación de Proteína/genética , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Evolución Molecular , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Nitrato-Reductasa/química , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Transporte de Proteínas , Homología de Secuencia de Aminoácido
5.
Proc Natl Acad Sci U S A ; 102(24): 8460-5, 2005 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-15941830

RESUMEN

The twin-arginine transport (Tat) system is a protein-targeting pathway of prokaryotes and chloroplasts. Most Escherichia coli Tat substrates are complex metalloenzymes that must be correctly folded and assembled before transport, and a preexport chaperone-mediated "proofreading" process is therefore in operation. The paradigm proofreading chaperone is TorD, which coordinates maturation and export of the key respiratory enzyme trimethylamine N-oxide reductase (TorA). It is demonstrated here that purified TorD binds tightly and with exquisite specificity to the TorA twin-arginine signal peptide in vitro. It is also reported that the TorD family constitutes a hitherto unexpected class of nucleotide-binding proteins. The affinity of TorD for GTP is enhanced by initial signal peptide binding, and it is proposed that GTP governs signal peptide binding-and-release cycles during Tat proofreading.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Chaperonas Moleculares/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Señales de Clasificación de Proteína/fisiología , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Western Blotting , Calorimetría , Clonación Molecular , Escherichia coli , Fluorometría , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Oxidorreductasas N-Desmetilantes/genética , Plásmidos/genética , Unión Proteica , Señales de Clasificación de Proteína/genética , Ultracentrifugación
6.
EMBO J ; 23(20): 3962-72, 2004 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-15385959

RESUMEN

The Escherichia coli twin-arginine protein transport (Tat) system is a molecular machine dedicated to the translocation of fully folded substrate proteins across the energy-transducing inner membrane. Complex cofactor-containing Tat substrates, such as the model (NiFe) hydrogenase-2 and trimethylamine N-oxide reductase (TorA) systems, acquire their redox cofactors prior to export from the cell and require to be correctly assembled before transport can proceed. It is likely, therefore, that cellular mechanisms exist to prevent premature export of immature substrates. Using a combination of genetic and biochemical approaches including gene knockouts, signal peptide swapping, complementation, and site-directed mutagenesis, we highlight here this crucial 'proofreading' or 'quality control' activity in operation during assembly of complex endogenous Tat substrates. Our experiments successfully uncouple the Tat transport and cofactor-insertion activities of the TorA-specific chaperone TorD and demonstrate unequivocally that TorD recognises the TorA twin-arginine signal peptide. It is proposed that some Tat signal peptides operate in tandem with cognate binding chaperones to orchestrate the assembly and transport of complex enzymes.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Electroforesis en Gel de Poliacrilamida , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrogenasas/metabolismo , Metilaminas/metabolismo , Chaperonas Moleculares/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Pliegue de Proteína , Señales de Clasificación de Proteína , Transporte de Proteínas , Fracciones Subcelulares , Técnicas del Sistema de Dos Híbridos
7.
Mol Microbiol ; 49(5): 1377-90, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12940994

RESUMEN

A group of bacterial exported proteins are synthesized with N-terminal signal peptides containing a SRRxFLK 'twin-arginine' amino acid motif. Proteins bearing twin-arginine signal peptides are targeted post-translationally to the twin-arginine translocation (Tat) system which transports folded substrates across the inner membrane. In Escherichia coli, most integral inner membrane proteins are assembled by a co-translational process directed by SRP/FtsY, the SecYEG translocase, and YidC. In this work we define a novel class of integral membrane proteins assembled by a Tat-dependent mechanism. We show that at least five E. coli Tat substrate proteins contain hydrophobic C-terminal transmembrane helices (or 'C-tails'). Fusions between the identified transmembrane C-tails and the exclusively Tat-dependent reporter proteins TorA and SufI render the resultant chimeras membrane-bound. Export-linked signal peptide processing and membrane integration of the chimeras is shown to be both Tat-dependent and YidC-independent. It is proposed that the mechanism of membrane integration of proteins by the Tat system is fundamentally distinct from that employed for other bacterial inner membrane proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Señales de Clasificación de Proteína , Fusión Artificial Génica , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genes Reporteros/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Oxidorreductasas N-Desmetilantes/genética , Transporte de Proteínas , Proteínas Recombinantes/metabolismo
8.
Yeast ; 20(7): 575-85, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12734796

RESUMEN

Saccharomyces cerevisiae displays very strong induction of a single ATP-binding cassette (ABC) transporter, Pdr12p, when stressed with certain weak organic acids. This is a plasma membrane pump catalysing active efflux of the organic acid anion from the cell. Pdr12p action probably allows S. cerevisiae to maintain lower intracellular levels of several weak organic acid preservatives than would be expected on the basis of the free equilibration of the acid across the cell membrane. This in turn facilitates growth in the presence of these preservatives and therefore yeast spoilage of food materials. Pdr12p appears to confer resistance to those carboxylic acids that, to a reasonable degree, partition into both the lipid bilayer and aqueous phases. Its gene (PDR12) is strongly induced by sorbate, benzoate and certain other moderately lipophilic carboxylate compounds, but not by organic alcohols or high levels of acetate. PDR12 induction reflects the operation of a previously uncharacterized S. cerevisiae stress response, for which the induction signal is probably a high intracellular pool of the organic acid anion.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/biosíntesis , Ácidos Carboxílicos/farmacología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Bases , Señalización del Calcio , Ácidos Carboxílicos/química , ADN de Hongos/genética , Microbiología de Alimentos , Conservantes de Alimentos/farmacología , Genes Reporteros , Proteínas del Choque Térmico HSP30 , Proteínas de Choque Térmico/genética , Operón Lac , Proteínas de la Membrana/genética , Presión Osmótica , Estrés Oxidativo , Plásmidos/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
9.
Mol Cell Biol ; 23(5): 1775-85, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12588995

RESUMEN

The Saccharomyces cerevisiae ATP-binding cassette (ABC) transporter Pdr12p effluxes weak acids such as sorbate and benzoate, thus mediating stress adaptation. In this study, we identify a novel transcription factor, War1p, as the regulator of this stress adaptation through transcriptional induction of PDR12. Cells lacking War1p are weak acid hypersensitive, since they fail to induce Pdr12p. The nuclear Zn2Cys6 transcriptional regulator War1p forms homodimers and is rapidly phosphorylated upon sorbate stress. The appearance of phosphorylated War1p isoforms coincides with transcriptional activation of PDR12. Promoter deletion analysis identified a novel cis-acting weak acid response element (WARE) in the PDR12 promoter required for PDR12 induction. War1p recognizes and decorates the WARE both in vitro and in vivo, as demonstrated by band shift assays and in vivo footprinting. Importantly, War1p occupies the WARE in the presence and absence of stress, demonstrating constitutive DNA binding in vivo. Our results suggest that weak acid stress triggers phosphorylation and perhaps activation of War1p. In turn, War1p activation is necessary for the induction of PDR12 through a novel signal transduction event that elicits weak organic acid stress adaptation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Núcleo Celular/metabolismo , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Eliminación de Gen , Glutatión Transferasa/metabolismo , Concentración de Iones de Hidrógeno , Immunoblotting , Microscopía Fluorescente , Modelos Biológicos , Fosforilación , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas , ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/química , Transcripción Genética , Activación Transcripcional , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA