Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38782589

RESUMEN

BACKGROUND AND PURPOSE: The aim of this study was to determine the diagnostic value of fractional plasma volume derived from dynamic contrast-enhanced perfusion MR imaging versus ADC, obtained from DWI in differentiating between grade 2 (low-grade) and grade 3 (high-grade) intracranial ependymomas. MATERIALS AND METHODS: A hospital database was created for the period from January 2013 through June 2022, including patients with histologically-proved ependymoma diagnosis with available dynamic contrast-enhanced MR imaging. Both dynamic contrast-enhanced perfusion and DWI were performed on each patient using 1.5T and 3T scanners. Fractional plasma volume maps and ADC maps were calculated. ROIs were defined by a senior neuroradiologist manually by including the enhancing tumor on every section and conforming a VOI to obtain the maximum value of fractional plasma volume (Vpmax) and the minimum value of ADC (ADCmin). A Mann-Whitney U test at a significance level of corrected P = .01 was used to evaluate the differences. Additionally, receiver operating characteristic curve analysis was applied to assess the sensitivity and specificity of Vpmax and ADCmin values. RESULTS: A total of 20 patients with ependymomas (10 grade 2 tumors and 10 grade 3 tumors) were included. Vpmax values for grade 3 ependymomas were significantly higher (P < .002) than those for grade 2. ADCmin values were overall lower in high-grade lesions. However, no statistically significant differences were found (P = .12114). CONCLUSIONS: As a dynamic contrast-enhanced perfusion MR imaging metric, fractional plasma volume can be used as an indicator to differentiate grade 2 and grade 3 ependymomas. Dynamic contrast-enhanced perfusion MR imaging plays an important role with high diagnostic value in differentiating low- and high-grade ependymoma.

2.
Br J Haematol ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613141

RESUMEN

Histiocytic neoplasms are diverse clonal haematopoietic disorders, and clinical disease is mediated by tumorous infiltration as well as uncontrolled systemic inflammation. Individual subtypes include Langerhans cell histiocytosis (LCH), Rosai-Dorfman-Destombes disease (RDD) and Erdheim-Chester disease (ECD), and these have been characterized with respect to clinical phenotypes, driver mutations and treatment paradigms. Less is known about patients with mixed histiocytic neoplasms (MXH), that is two or more coexisting disorders. This international collaboration examined patients with biopsy-proven MXH with respect to component disease subtypes, oncogenic driver mutations and responses to conventional (chemotherapeutic or immunosuppressive) versus targeted (BRAF or MEK inhibitor) therapies. Twenty-seven patients were studied with ECD/LCH (19/27), ECD/RDD (6/27), RDD/LCH (1/27) and ECD/RDD/LCH (1/27). Mutations previously undescribed in MXH were identified, including KRAS, MAP2K2, MAPK3, non-V600-BRAF, RAF1 and a BICD2-BRAF fusion. A repeated-measure generalized estimating equation demonstrated that targeted treatment was statistically significantly (1) more likely to result in a complete response (CR), partial response (PR) or stable disease (SD) (odds ratio [OR]: 17.34, 95% CI: 2.19-137.00, p = 0.007), and (2) less likely to result in progression (OR: 0.08, 95% CI: 0.03-0.23, p < 0.0001). Histiocytic neoplasms represent an entity with underappreciated clinical and molecular diversity, poor responsiveness to conventional therapy and exquisite sensitivity to targeted therapy.

3.
BJR Artif Intell ; 1(1): ubae004, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38476956

RESUMEN

Objectives: Auto-segmentation promises greater speed and lower inter-reader variability than manual segmentations in radiation oncology clinical practice. This study aims to implement and evaluate the accuracy of the auto-segmentation algorithm, "Masked Image modeling using the vision Transformers (SMIT)," for neck nodal metastases on longitudinal T2-weighted (T2w) MR images in oropharyngeal squamous cell carcinoma (OPSCC) patients. Methods: This prospective clinical trial study included 123 human papillomaviruses (HPV-positive [+]) related OSPCC patients who received concurrent chemoradiotherapy. T2w MR images were acquired on 3 T at pre-treatment (Tx), week 0, and intra-Tx weeks (1-3). Manual delineations of metastatic neck nodes from 123 OPSCC patients were used for the SMIT auto-segmentation, and total tumor volumes were calculated. Standard statistical analyses compared contour volumes from SMIT vs manual segmentation (Wilcoxon signed-rank test [WSRT]), and Spearman's rank correlation coefficients (ρ) were computed. Segmentation accuracy was evaluated on the test data set using the dice similarity coefficient (DSC) metric value. P-values <0.05 were considered significant. Results: No significant difference in manual and SMIT delineated tumor volume at pre-Tx (8.68 ± 7.15 vs 8.38 ± 7.01 cm3, P = 0.26 [WSRT]), and the Bland-Altman method established the limits of agreement as -1.71 to 2.31 cm3, with a mean difference of 0.30 cm3. SMIT model and manually delineated tumor volume estimates were highly correlated (ρ = 0.84-0.96, P < 0.001). The mean DSC metric values were 0.86, 0.85, 0.77, and 0.79 at the pre-Tx and intra-Tx weeks (1-3), respectively. Conclusions: The SMIT algorithm provides sufficient segmentation accuracy for oncological applications in HPV+ OPSCC. Advances in knowledge: First evaluation of auto-segmentation with SMIT using longitudinal T2w MRI in HPV+ OPSCC.

4.
J Clin Oncol ; 42(8): 940-950, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38241600

RESUMEN

PURPOSE: Standard curative-intent chemoradiotherapy for human papillomavirus (HPV)-related oropharyngeal carcinoma results in significant toxicity. Since hypoxic tumors are radioresistant, we posited that the aerobic state of a tumor could identify patients eligible for de-escalation of chemoradiotherapy while maintaining treatment efficacy. METHODS: We enrolled patients with HPV-related oropharyngeal carcinoma to receive de-escalated definitive chemoradiotherapy in a phase II study (ClinicalTrials.gov identifier: NCT03323463). Patients first underwent surgical removal of disease at their primary site, but not of gross disease in the neck. A baseline 18F-fluoromisonidazole positron emission tomography scan was used to measure tumor hypoxia and was repeated 1-2 weeks intratreatment. Patients with nonhypoxic tumors received 30 Gy (3 weeks) with chemotherapy, whereas those with hypoxic tumors received standard chemoradiotherapy to 70 Gy (7 weeks). The primary objective was achieving a 2-year locoregional control (LRC) of 95% with a 7% noninferiority margin. RESULTS: One hundred fifty-eight patients with T0-2/N1-N2c were enrolled, of which 152 patients were eligible for analyses. Of these, 128 patients met criteria for 30 Gy and 24 patients received 70 Gy. The 2-year LRC was 94.7% (95% CI, 89.8 to 97.7), meeting our primary objective. With a median follow-up time of 38.3 (range, 22.1-58.4) months, the 2-year progression-free survival (PFS) and overall survival (OS) rates were 94% and 100%, respectively, for the 30-Gy cohort. The 70-Gy cohort had similar 2-year PFS and OS rates at 96% and 96%, respectively. Acute grade 3-4 adverse events were more common in 70 Gy versus 30 Gy (58.3% v 32%; P = .02). Late grade 3-4 adverse events only occurred in the 70-Gy cohort, in which 4.5% complained of late dysphagia. CONCLUSION: Tumor hypoxia is a promising approach to direct dosing of curative-intent chemoradiotherapy for HPV-related carcinomas with preserved efficacy and substantially reduced toxicity that requires further investigation.


Asunto(s)
Carcinoma , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Virus del Papiloma Humano , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/terapia , Neoplasias Orofaríngeas/terapia , Neoplasias Orofaríngeas/tratamiento farmacológico , Quimioradioterapia/efectos adversos , Quimioradioterapia/métodos , Carcinoma/tratamiento farmacológico , Hipoxia/etiología , Hipoxia/tratamiento farmacológico
5.
Tomography ; 9(6): 2052-2066, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37987347

RESUMEN

There is a need to develop user-friendly imaging tools estimating robust quantitative biomarkers (QIBs) from multiparametric (mp)MRI for clinical applications in oncology. Quantitative metrics derived from (mp)MRI can monitor and predict early responses to treatment, often prior to anatomical changes. We have developed a vendor-agnostic, flexible, and user-friendly MATLAB-based toolkit, MRI-Quantitative Analysis and Multiparametric Evaluation Routines ("MRI-QAMPER", current release v3.0), for the estimation of quantitative metrics from dynamic contrast-enhanced (DCE) and multi-b value diffusion-weighted (DW) MR and MR relaxometry. MRI-QAMPER's functionality includes generating numerical parametric maps from these methods reflecting tumor permeability, cellularity, and tissue morphology. MRI-QAMPER routines were validated using digital reference objects (DROs) for DCE and DW MRI, serving as initial approval stages in the National Cancer Institute Quantitative Imaging Network (NCI/QIN) software benchmark. MRI-QAMPER has participated in DCE and DW MRI Collaborative Challenge Projects (CCPs), which are key technical stages in the NCI/QIN benchmark. In a DCE CCP, QAMPER presented the best repeatability coefficient (RC = 0.56) across test-retest brain metastasis data, out of ten participating DCE software packages. In a DW CCP, QAMPER ranked among the top five (out of fourteen) tools with the highest area under the curve (AUC) for prostate cancer detection. This platform can seamlessly process mpMRI data from brain, head and neck, thyroid, prostate, pancreas, and bladder cancer. MRI-QAMPER prospectively analyzes dose de-escalation trial data for oropharyngeal cancer, which has earned it advanced NCI/QIN approval for expanded usage and applications in wider clinical trials.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Medios de Contraste , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Oncología Médica , Biomarcadores
6.
Cancers (Basel) ; 15(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37174039

RESUMEN

Cancer care increasingly relies on imaging for patient management. The two most common cross-sectional imaging modalities in oncology are computed tomography (CT) and magnetic resonance imaging (MRI), which provide high-resolution anatomic and physiological imaging. Herewith is a summary of recent applications of rapidly advancing artificial intelligence (AI) in CT and MRI oncological imaging that addresses the benefits and challenges of the resultant opportunities with examples. Major challenges remain, such as how best to integrate AI developments into clinical radiology practice, the vigorous assessment of quantitative CT and MR imaging data accuracy, and reliability for clinical utility and research integrity in oncology. Such challenges necessitate an evaluation of the robustness of imaging biomarkers to be included in AI developments, a culture of data sharing, and the cooperation of knowledgeable academics with vendor scientists and companies operating in radiology and oncology fields. Herein, we will illustrate a few challenges and solutions of these efforts using novel methods for synthesizing different contrast modality images, auto-segmentation, and image reconstruction with examples from lung CT as well as abdome, pelvis, and head and neck MRI. The imaging community must embrace the need for quantitative CT and MRI metrics beyond lesion size measurement. AI methods for the extraction and longitudinal tracking of imaging metrics from registered lesions and understanding the tumor environment will be invaluable for interpreting disease status and treatment efficacy. This is an exciting time to work together to move the imaging field forward with narrow AI-specific tasks. New AI developments using CT and MRI datasets will be used to improve the personalized management of cancer patients.

7.
Eur Radiol ; 33(9): 6582-6591, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37042979

RESUMEN

OBJECTIVES: While fully supervised learning can yield high-performing segmentation models, the effort required to manually segment large training sets limits practical utility. We investigate whether data mined line annotations can facilitate brain MRI tumor segmentation model development without requiring manually segmented training data. METHODS: In this retrospective study, a tumor detection model trained using clinical line annotations mined from PACS was leveraged with unsupervised segmentation to generate pseudo-masks of enhancing tumors on T1-weighted post-contrast images (9911 image slices; 3449 adult patients). Baseline segmentation models were trained and employed within a semi-supervised learning (SSL) framework to refine the pseudo-masks. Following each self-refinement cycle, a new model was trained and tested on a held-out set of 319 manually segmented image slices (93 adult patients), with the SSL cycles continuing until Dice score coefficient (DSC) peaked. DSCs were compared using bootstrap resampling. Utilizing the best-performing models, two inference methods were compared: (1) conventional full-image segmentation, and (2) a hybrid method augmenting full-image segmentation with detection plus image patch segmentation. RESULTS: Baseline segmentation models achieved DSC of 0.768 (U-Net), 0.831 (Mask R-CNN), and 0.838 (HRNet), improving with self-refinement to 0.798, 0.871, and 0.873 (each p < 0.001), respectively. Hybrid inference outperformed full image segmentation alone: DSC 0.884 (Mask R-CNN) vs. 0.873 (HRNet), p < 0.001. CONCLUSIONS: Line annotations mined from PACS can be harnessed within an automated pipeline to produce accurate brain MRI tumor segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities. KEY POINTS: • A brain MRI tumor detection model trained using clinical line measurement annotations mined from PACS was leveraged to automatically generate tumor segmentation pseudo-masks. • An iterative self-refinement process automatically improved pseudo-mask quality, with the best-performing segmentation pipeline achieving a Dice score of 0.884 on a held-out test set. • Tumor line measurement annotations generated in routine clinical radiology practice can be harnessed to develop high-performing segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities.


Asunto(s)
Neoplasias Encefálicas , Procesamiento de Imagen Asistido por Computador , Adulto , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
8.
Cancers (Basel) ; 14(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36428699

RESUMEN

The purpose of the present pilot study was to estimate T1 and T2 metric values derived simultaneously from a new, rapid Magnetic Resonance Fingerprinting (MRF) technique, as well as to assess their ability to characterize-brain metastases (BM) and normal-appearing brain tissues. Fourteen patients with BM underwent MRI, including prototype MRF, on a 3T scanner. In total, 108 measurements were analyzed: 42 from solid parts of BM's (21 each on T1 and T2 maps) and 66 from normal-appearing brain tissue (11 ROIs each on T1 and T2 maps for gray matter [GM], white matter [WM], and cerebrospinal fluid [CSF]). The BM's mean T1 and T2 values differed significantly from normal-appearing WM (p < 0.05). The mean T1 values from normal-appearing GM, WM, and CSF regions were 1205 ms, 840 ms, and 4233 ms, respectively. The mean T2 values were 108 ms, 78 ms, and 442 ms, respectively. The mean T1 and T2 values for untreated BM (n = 4) were 2035 ms and 168 ms, respectively. For treated BM (n = 17) the T1 and T2 values were 2163 ms and 141 ms, respectively. MRF technique appears to be a promising and rapid quantitative method for the characterization of free water content and tumor morphology in BMs.

9.
Cancers (Basel) ; 14(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35892883

RESUMEN

The present exploratory study investigates the performance of a new, rapid, synthetic MRI method for diagnostic image quality assessment and measurement of relaxometry metric values in head and neck (HN) tumors and normal-appearing masseter muscle. The multi-dynamic multi-echo (MDME) sequence was used for data acquisition, followed by synthetic image reconstruction on a 3T MRI scanner for 14 patients (3 untreated and 11 treated). The MDME enables absolute quantification of physical tissue properties, including T1 and T2, with a shorter scan time than the current state-of-the-art methods used for relaxation measurements. The vendor termed the combined package MAGnetic resonance imaging Compilation (MAGiC). In total, 48 regions of interest (ROIs) were analyzed, drawn on normal-appearing masseter muscle and tumors in the HN region. Mean T1 and T2 values obtained from normal-appearing muscle were 880 ± 52 ms and 46 ± 3 ms, respectively. Mean T1 and T2 values obtained from tumors were 1930 ± 422 ms and 77 ± 13 ms, respectively, for the untreated group, 1745 ± 410 ms and 107 ± 61 ms, for the treated group. A total of 1552 images from both synthetic MRI and conventional clinical imaging were assessed by the radiologists to provide the rating for T1w and T2w image contrasts. The synthetically generated qualitative T2w images were acceptable and comparable to conventional diagnostic images (93% acceptability rating for both). The acceptability ratings for MAGiC-generated T1w, and conventional images were 64% and 100%, respectively. The benefit of MAGiC in HN imaging is twofold, providing relaxometry maps in a clinically feasible time and the ability to generate a different combination of contrast images in a single acquisition.

10.
Cancers (Basel) ; 14(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35681631

RESUMEN

The present preliminary study aims to characterize brain metastases (BM) using T1 and T2 maps generated from newer, rapid, synthetic MRI (MAGnetic resonance image Compilation; MAGiC) in a clinical setting. We acquired synthetic MRI data from 11 BM patients on a 3T scanner. A multiple-dynamic multiple-echo (MDME) sequence was used for data acquisition and synthetic image reconstruction, including post-processing. MDME is a multi-contrast sequence that enables absolute quantification of physical tissue properties, including T1 and T2, independent of the scanner settings. In total, 82 regions of interest (ROIs) were analyzed, which were obtained from both normal-appearing brain tissue and BM lesions. The mean values obtained from the 48 normal-appearing brain tissue regions and 34 ROIs of BM lesions (T1 and T2) were analyzed using standard statistical methods. The mean T1 and T2 values were 1143 ms and 78 ms, respectively, for normal-appearing gray matter, 701 ms and 64 ms for white matter, and 4206 ms and 390 ms for cerebrospinal fluid. For untreated BMs, the mean T1 and T2 values were 1868 ms and 100 ms, respectively, and 2211 ms and 114 ms for the treated group. The quantitative T1 and T2 values generated from synthetic MRI can characterize BM and normal-appearing brain tissues.

12.
Radiology ; 303(1): 80-89, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35040676

RESUMEN

Background Artificial intelligence (AI) applications for cancer imaging conceptually begin with automated tumor detection, which can provide the foundation for downstream AI tasks. However, supervised training requires many image annotations, and performing dedicated post hoc image labeling is burdensome and costly. Purpose To investigate whether clinically generated image annotations can be data mined from the picture archiving and communication system (PACS), automatically curated, and used for semisupervised training of a brain MRI tumor detection model. Materials and Methods In this retrospective study, the cancer center PACS was mined for brain MRI scans acquired between January 2012 and December 2017 and included all annotated axial T1 postcontrast images. Line annotations were converted to boxes, excluding boxes shorter than 1 cm or longer than 7 cm. The resulting boxes were used for supervised training of object detection models using RetinaNet and Mask region-based convolutional neural network (R-CNN) architectures. The best-performing model trained from the mined data set was used to detect unannotated tumors on training images themselves (self-labeling), automatically correcting many of the missing labels. After self-labeling, new models were trained using this expanded data set. Models were scored for precision, recall, and F1 using a held-out test data set comprising 754 manually labeled images from 100 patients (403 intra-axial and 56 extra-axial enhancing tumors). Model F1 scores were compared using bootstrap resampling. Results The PACS query extracted 31 150 line annotations, yielding 11 880 boxes that met inclusion criteria. This mined data set was used to train models, yielding F1 scores of 0.886 for RetinaNet and 0.908 for Mask R-CNN. Self-labeling added 18 562 training boxes, improving model F1 scores to 0.935 (P < .001) and 0.954 (P < .001), respectively. Conclusion The application of semisupervised learning to mined image annotations significantly improved tumor detection performance, achieving an excellent F1 score of 0.954. This development pipeline can be extended for other imaging modalities, repurposing unused data silos to potentially enable automated tumor detection across radiologic modalities. © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Encéfalo , Humanos , Imagen por Resonancia Magnética , Estudios Retrospectivos
13.
Cancers (Basel) ; 13(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34359810

RESUMEN

The present study aimed to investigate the correlation at pre-treatment (TX) between quantitative metrics derived from multimodality imaging (MMI), including 18F-FDG-PET/CT, 18F-FMISO-PET/CT, DW- and DCE-MRI, using a community detection algorithm (CDA) in head and neck squamous cell carcinoma (HNSCC) patients. Twenty-three HNSCC patients with 27 metastatic lymph nodes underwent a total of 69 MMI exams at pre-TX. Correlations among quantitative metrics derived from FDG-PET/CT (SUL), FMSIO-PET/CT (K1, k3, TBR, and DV), DW-MRI (ADC, IVIM [D, D*, and f]), and FXR DCE-MRI [Ktrans, ve, and τi]) were investigated using the CDA based on a "spin-glass model" coupled with the Spearman's rank, ρ, analysis. Mean MRI T2 weighted tumor volumes and SULmean values were moderately positively correlated (ρ = 0.48, p = 0.01). ADC and D exhibited a moderate negative correlation with SULmean (ρ ≤ -0.42, p < 0.03 for both). K1 and Ktrans were positively correlated (ρ = 0.48, p = 0.01). In contrast, Ktrans and k3max were negatively correlated (ρ = -0.41, p = 0.03). CDA revealed four communities for 16 metrics interconnected with 33 edges in the network. DV, Ktrans, and K1 had 8, 7, and 6 edges in the network, respectively. After validation in a larger population, the CDA approach may aid in identifying useful biomarkers for developing individual patient care in HNSCC.

14.
Eur J Nucl Med Mol Imaging ; 48(12): 3940-3950, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33966087

RESUMEN

PURPOSE: Current clinical and imaging tools remain suboptimal for predicting treatment response and prognosis in CNS lymphomas. We investigated the prognostic value of baseline [18F]FDG PET in patients with CNS lymphoma receiving ibrutinib-based treatments. METHODS: Fifty-three patients enrolled in a prospective clinical trial and underwent brain PET before receiving single-agent ibrutinib or ibrutinib in combination with methotrexate with or without rituximab. [18F]FDG uptake in these lesions was quantified by drawing PET volumes of interest around up to five [18F]FDG-avid lesions per patient (with uptake greater than surrounding brain). We measured standardized uptake values (SUVmax), metabolic tumor volumes, total lesion glycolysis (TLG), and the sum thereof in these lesions. We analyzed the relationship between PET parameters and mutation status, overall response rates, and progression-free survival (PFS). RESULTS: Thirty-eight patients underwent single-agent therapy and 15 received combination therapy. On PET, 15/53 patients had no measurable disease. In the other 38 patients, a total of 71 lesions were identified on PET. High-intensity [18F]FDG uptake and a larger volume of [18F]FDG-avid disease were inversely related to treatment outcome (p ≤ 0.005). In univariable analysis, PFS was linearly correlated with all PET parameters, with stronger association when sum-values were used. A multivariable model showed that risk of progression increased by 9% for every 5-unit increase in sumSUVmax (hazard ratio = 1.09 [95% CI: 1.04 to 1.14]). CONCLUSION: Higher lesional metabolic parameters are inversely related to outcome in patients undergoing ibrutinib-based therapies, and sumSUVmax emerged as a strong independent prognostic factor. TRIAL REGISTRATION: NCT02315326; https://clinicaltrials.gov/ct2/show/NCT02315326?term=NCT02315326&draw=2&rank=1.


Asunto(s)
Fluorodesoxiglucosa F18 , Linfoma no Hodgkin , Adenina/análogos & derivados , Glucólisis , Humanos , Piperidinas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Carga Tumoral
16.
J Med Imaging (Bellingham) ; 8(3): 031904, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33954225

RESUMEN

Purpose: The goal of this study is to develop innovative methods for identifying radiomic features that are reproducible over varying image acquisition settings. Approach: We propose a regularized partial correlation network to identify reliable and reproducible radiomic features. This approach was tested on two radiomic feature sets generated using two different reconstruction methods on computed tomography (CT) scans from a cohort of 47 lung cancer patients. The largest common network component between the two networks was tested on phantom data consisting of five cancer samples. To further investigate whether radiomic features found can identify phenotypes, we propose a k -means clustering algorithm coupled with the optimal mass transport theory. This approach following the regularized partial correlation network analysis was tested on CT scans from 77 head and neck squamous cell carcinoma (HNSCC) patients in the Cancer Imaging Archive (TCIA) and validated using an independent dataset. Results: A set of common radiomic features was found in relatively large network components between the resultant two partial correlation networks resulting from a cohort of lung cancer patients. The reliability and reproducibility of those radiomic features were further validated on phantom data using the Wasserstein distance. Further analysis using the network-based Wasserstein k -means algorithm on the TCIA HNSCC data showed that the resulting clusters separate tumor subsites as well as HPV status, and this was validated on an independent dataset. Conclusion: We showed that a network-based analysis enables identifying reproducible radiomic features and use of the selected set of features can enhance clustering results.

17.
Cancers (Basel) ; 13(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800762

RESUMEN

The aim of the present study was to identify whether the quantitative metrics from pre-treatment (TX) non-Gaussian intravoxel incoherent motion (NGIVIM) diffusion weighted (DW-) and fast exchange regime (FXR) dynamic contrast enhanced (DCE)-MRI can predict patients with locoregional failure (LRF) in nasopharyngeal carcinoma (NPC). Twenty-nine NPC patients underwent pre-TX DW- and DCE-MRI on a 3T MR scanner. DW imaging data from primary tumors were fitted to monoexponential (ADC) and NGIVIM (D, D*, f, and K) models. The metrics Ktrans, ve, and τi were estimated using the FXR model. Cumulative incidence (CI) analysis and Fine-Gray (FG) modeling were performed considering death as a competing risk. Mean ve values were significantly different between patients with and without LRF (p = 0.03). Mean f values showed a trend towards the difference between the groups (p = 0.08). Histograms exhibited inter primary tumor heterogeneity. The CI curves showed significant differences for the dichotomized cutoff value of ADC ≤ 0.68 × 10-3 (mm2/s), D ≤ 0.74 × 10-3 (mm2/s), and f ≤ 0.18 (p < 0.05). τi ≤ 0.89 (s) cutoff value showed borderline significance (p = 0.098). FG's modeling showed a significant difference for the K cutoff value of ≤0.86 (p = 0.034). Results suggest that the role of pre-TX NGIVIM DW- and FXR DCE-MRI-derived metrics for predicting LRF in NPC than alone.

18.
J Natl Cancer Inst ; 113(6): 742-751, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33429428

RESUMEN

BACKGROUND: Patients with human papillomavirus-related oropharyngeal cancers have excellent outcomes but experience clinically significant toxicities when treated with standard chemoradiotherapy (70 Gy). We hypothesized that functional imaging could identify patients who could be safely deescalated to 30 Gy of radiotherapy. METHODS: In 19 patients, pre- and intratreatment dynamic fluorine-18-labeled fluoromisonidazole positron emission tomography (PET) was used to assess tumor hypoxia. Patients without hypoxia at baseline or intratreatment received 30 Gy; patients with persistent hypoxia received 70 Gy. Neck dissection was performed at 4 months in deescalated patients to assess pathologic response. Magnetic resonance imaging (weekly), circulating plasma cell-free DNA, RNA-sequencing, and whole-genome sequencing (WGS) were performed to identify potential molecular determinants of response. Samples from an independent prospective study were obtained to reproduce molecular findings. All statistical tests were 2-sided. RESULTS: Fifteen of 19 patients had no hypoxia on baseline PET or resolution on intratreatment PET and were deescalated to 30 Gy. Of these 15 patients, 11 had a pathologic complete response. Two-year locoregional control and overall survival were 94.4% (95% confidence interval = 84.4% to 100%) and 94.7% (95% confidence interval = 85.2% to 100%), respectively. No acute grade 3 radiation-related toxicities were observed. Microenvironmental features on serial imaging correlated better with pathologic response than tumor burden metrics or circulating plasma cell-free DNA. A WGS-based DNA repair defect was associated with response (P = .02) and was reproduced in an independent cohort (P = .03). CONCLUSIONS: Deescalation of radiotherapy to 30 Gy on the basis of intratreatment hypoxia imaging was feasible, safe, and associated with minimal toxicity. A DNA repair defect identified by WGS was predictive of response. Intratherapy personalization of chemoradiotherapy may facilitate marked deescalation of radiotherapy.


Asunto(s)
Neoplasias Orofaríngeas , Quimioradioterapia/métodos , Humanos , Neoplasias Orofaríngeas/radioterapia , Tomografía de Emisión de Positrones , Estudios Prospectivos , Dosificación Radioterapéutica , Hipoxia Tumoral
19.
J Neuroimaging ; 31(2): 317-323, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33370467

RESUMEN

BACKGROUND AND PURPOSE: To determine the ability of diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict long-term response of brain metastases prior to and within 72 hours of stereotactic radiosurgery (SRS). METHODS: In this prospective pilot study, multiple b-value DWI and T1-weighted DCE-MRI were performed in patients with brain metastases before and within 72 hours following SRS. Diffusion-weighted images were analyzed using the monoexponential and intravoxel incoherent motion (IVIM) models. DCE-MRI data were analyzed using the extended Tofts pharmacokinetic model. The parameters obtained with these methods were correlated with brain metastasis outcomes according to modified Response Assessment in Neuro-Oncology Brain Metastases criteria. RESULTS: We included 25 lesions from 16 patients; 16 patients underwent pre-SRS MRI and 12 of 16 patients underwent both pre- and early (within 72 hours) post-SRS MRI. The perfusion fraction (f) derived from IVIM early post-SRS was higher in lesions demonstrating progressive disease than in lesions demonstrating stable disease, partial response, or complete response (q = .041). Pre-SRS extracellular extravascular volume fraction, ve , and volume transfer coefficient, Ktrans , derived from DCE-MRI were higher in nonresponders versus responders (q = .041). CONCLUSIONS: Quantitative DWI and DCE-MRI are feasible imaging methods in the pre- and early (within 72 hours) post-SRS evaluation of brain metastases. DWI- and DCE-MRI-derived parameters demonstrated physiologic changes (tumor cellularity and vascularity) and offer potentially useful biomarkers that can predict treatment response. This allows for initiation of alternate therapies within an effective time window that may help prevent disease progression.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Imagen de Difusión por Resonancia Magnética , Radiocirugia , Adulto , Anciano , Medios de Contraste , Progresión de la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos
20.
Eur J Nucl Med Mol Imaging ; 48(4): 1154-1165, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33057928

RESUMEN

OBJECTIVES: The aim of this study was to [1] characterize distribution of Erdheim-Chester Disease (ECD) by 18F-FDG PET/CT and [2] determine the utility of metabolic (18F-FDG PET/CT) imaging versus anatomic imaging (CT or MRI) in evaluating ECD patients for clinical trial eligibility. METHODS: 18F-FDG PET/CT and corresponding CT or MRI studies for ECD patients enrolled in a prospective registry study were reviewed. Sites of disease were classified as [1] detectable by 18F-FDG PET only, CT/MRI only, or both and as [2] measurable by modified PERCIST (mPERCIST) only, RECIST only, or both. Descriptive analysis was performed and paired t test for between-group comparisons. RESULTS: Fifty patients were included (mean age 51.5 years; range 18-70 years). Three hundred thirty-three disease sites were detected among all imaging modalities, 188 (56%) by both 18F-FDG PET and CT/MRI, 67 (20%) by 18F-FDG PET only, 75 (23%) by MRI brain only, and 3 (1%) by CT only. Of 178 disease sites measurable by mPERCIST or RECIST, 40 (22%) were measurable by both criteria, 136 (76%) by mPERCIST only, and 2 (1%) by RECIST only. On the patient level, 17 (34%) had mPERCIST and RECIST measurable disease, 30 (60%) had mPERCIST measurable disease only, and 0 had RECIST measurable disease only (p < 0.0001). CONCLUSION: Compared with anatomic imaging, 18F-FDG PET/CT augments evaluation of disease extent in ECD and increases identification of disease sites measurable by formal response criteria and therefore eligibility for clinical trials. Complementary organ-specific anatomic imaging offers the capacity to characterize sites of disease in greater anatomic detail. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03329274.


Asunto(s)
Enfermedad de Erdheim-Chester , Fluorodesoxiglucosa F18 , Adolescente , Adulto , Anciano , Enfermedad de Erdheim-Chester/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Sistema de Registros , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...