Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(8): 2313-2329, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280207

RESUMEN

Myosins are important motor proteins that associate with the actin cytoskeleton. Structurally, myosins function as heteromeric complexes where smaller light chains, such as calmodulin (CaM), bind to isoleucine-glutamine (IQ) domains in the neck region to facilitate mechano-enzymatic activity. We recently identified Arabidopsis CaM-like (CML) proteins CML13 and CML14 as interactors of proteins containing multiple IQ domains, including a myosin VIII. Here, we demonstrate that CaM, CML13, and CML14 bind the neck region of all four Arabidopsis myosin VIII isoforms. Among CMLs tested for binding to myosins VIIIs, CaM, CML13, and CML14 gave the strongest signals using in planta split-luciferase protein interaction assays. In vitro, recombinant CaM, CML13, and CML14 showed specific, high-affinity, calcium-independent binding to the IQ domains of myosin VIIIs. CaM, CML13, and CML14 co-localized to plasma membrane-bound puncta when co-expressed with red fluorescent protein-myosin fusion proteins containing IQ and tail domains of myosin VIIIs. In vitro actin motility assays using recombinant myosin VIIIs demonstrated that CaM, CML13, and CML14 function as light chains. Suppression of CML13 or CML14 expression using RNA silencing resulted in a shortened-hypocotyl phenotype, similar to that observed in a quadruple myosin mutant, myosin viii4KO. Collectively, our data indicate that Arabidopsis CML13 and CML14 are novel myosin VIII light chains.


Asunto(s)
Arabidopsis , Calmodulina , Calmodulina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Unión Proteica
2.
Plant Cell Physiol ; 65(2): 282-300, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38036467

RESUMEN

Eukaryotic cells use calcium ions (Ca2+) as second messengers, particularly in response to abiotic and biotic stresses. These signals are detected by Ca2+ sensor proteins, such as calmodulin (CaM), which regulate the downstream target proteins. Plants also possess many CaM-like proteins (CMLs), most of which remain unstudied. We recently demonstrated that Arabidopsis CML13 and CML14 interact with proteins containing isoleucine/glutamine (IQ) domains, including CaM-binding transcriptional activators (CAMTAs). Here, we show that CaM, CML13 and CML14 bind all six members of the Arabidopsis CAMTA family. Using a combination of in planta and in vitro protein-interaction assays, we tested 11 members of the CaM/CML family and demonstrated that only CaM, CML13 and CML14 bind to CAMTA IQ domains. CaM, CML13 and CML14 showed Ca2+-independent binding to the IQ region of CAMTA6 and CAMTA3, and CAMTA6 in vitro exhibited some specificity toward individual IQ domains within CAMTA6 in split-luciferase in planta assays. We show that cml13 mutants exhibited enhanced salinity tolerance during germination compared to wild-type plants, a phenotype similar to camta6 mutants. In contrast, plants overexpressing CML13-GFP or CML14-GFP in the wild-type background showed increased NaCl sensitivity. Under mannitol stress, cml13 mutants were more susceptible than camta6 mutants or wild-type plants. The phenotype of cml13 mutants could be rescued with the wild-type CML13 gene. Several salinity-marker genes under CAMTA6 control were similarly misregulated in both camta6 and cml13 mutants, further supporting a role for CML13 in CAMTA6 function. Collectively, our data suggest that CML13 and CML14 participate in abiotic stress signaling as CAMTA effectors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Salinidad , Factores de Transcripción/metabolismo , Estrés Salino
3.
Plant Cell Physiol ; 65(2): 228-242, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37946525

RESUMEN

Calmodulin (CaM)-like proteins (CMLs) are the largest family of calcium-binding proteins in plants, yet the functions of most CMLs are unknown. Arabidopsis CML13 and CML14 are closely related paralogs that interact with the isoleucine-glutamine (IQ) domains of myosins, IQ-domain proteins and CaM-binding transcription activators (CAMTAs). Here, we explored the physiological roles of CML13 and CML14 during development by using dexamethasone (Dex)-inducible RNA silencing to suppress either CML13 or CML14 transcript levels. In the absence of inducible suppression, CML13- and CML14-RNA-interference lines were indistinguishable from wild-type (WT) plants throughout development. In contrast, induction of silencing treatment led to rapid increases in RNA-hairpin production that correlated with a targeted reduction in CML13 or CML14 transcript levels and a range of developmental and morphological effects. RNA-suppression treatment did not impair the germination of CML13- or 14-RNA-interference lines, but these seedlings were chlorotic, displayed high mortality and failed to achieve seedling establishment. Under Dex treatment, seeds of CML13- and CML14-RNA-interference lines exhibited differential sensitivity to exogenous ABA compared to WT seeds. Induced RNA suppression of mature plants led to reduced silique length, shorter roots and rapid leaf senescence in CML13- and 14-RNA-interference plants, which correlated with increased gene expression of the senescence marker Senescence-Associated Gene13 (SAG13). Plants induced for RNA suppression at 2 weeks post-germination exhibited a much stronger phenotype than treatment of 3-, 4- or 5-week-old plants. Collectively, our data indicate that both CML13 and CML14 are essential for normal development and function across a broad range of tissues and developmental stages.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Germinación/genética , Plantones/metabolismo , Semillas , ARN/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
4.
Plant Cell Environ ; 46(8): 2470-2491, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37222394

RESUMEN

In response to Ca2+ signals, the evolutionarily-conserved Ca2+ sensor calmodulin (CaM) regulates protein targets via direct interaction. Plants possess many CaM-like (CML) proteins, but their binding partners and functions are mostly unknown. Here, using Arabidopsis CML13 as 'bait' in a yeast two-hybrid screen, we isolated putative targets from three, unrelated protein families, namely, IQD proteins, calmodulin-binding transcriptional activators (CAMTAs) and myosins, all of which possess tandem isoleucine-glutamine (IQ) structural domains. Using the split-luciferase complementation assay in planta and the yeast 2-hybrid system, CML13 and CML14 showed a preference for interaction with tandem over single IQ domains. Relative to CaM, CML13 and CML14 displayed weaker signals when tested with the non-IQ, CaM-binding domain of glutamate decarboxylase or the single IQ domains of CNGC20 (cyclic-nucleotide gated channel-20) or IQM1 (IQ motif protein1). We examined IQD14 as a representative tandem IQ-protein and found that only CaM, CML13 and CML14 interacted with IQD14 among 12 CaM/CMLs tested. CaM, CML13 and CML14 bound in vitro to IQD14 in the presence or absence of Ca2+ . Binding affinities were in the nM range and were higher when two tandem IQ domains from IQD14 were present. Green fluorescent protein-tagged versions of CaM, CML13 and CML14 localized to both the cytosol and nucleus in plant cells but were partially relocalized to the microtubules when co-expressed with IQD14 tagged with mCherry. These and other data are discussed in the context of possible roles for these CMLs in gene regulation via CAMTAs and cytoskeletal activity via myosins and IQD proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Señalización del Calcio , Unión Proteica , Calcio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...