Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18043, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872200

RESUMEN

We examine the electromagnetic emission from two photo-illuminated linear arrays composed of inductively charged superconducting ring elements. The arrays are illuminated by an ultrafast infrared laser that triggers microwave broadband emission detected in the 1-26 GHz range. Based on constructive interference from the arrays a narrowing of the forward radiation lobe is observed with increasing element count and frequency demonstrating directed GHz emission. Results suggest that higher frequencies and a larger number of elements are achievable leading to a unique pulsed array emitter concept that can span frequencies from the microwave to the terahertz (THz) regime.

2.
Phys Rev E ; 107(1-2): 019903, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36797972

RESUMEN

This corrects the article DOI: 10.1103/PhysRevE.99.032141.

3.
J Phys Condens Matter ; 34(48)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36191563

RESUMEN

The quantum spin Hall (QSH) effect has been observed in topological insulators and long quantum wells using spin-orbit coupling as the probe, but it has not yet been observed in a metal. An experiment is proposed to measure the different Type-II QSH effect of an electron or hole in a two-dimensional (2D) metal by using the previously unexplored but relativistically gauge-invariant form of the generated 2D QSH Hamiltonian. Instead of using the electric field in the surface of the spin-polarized bands of a topological insulator or across the quantum well width as the probe, ones uses an applied azimuthal vector potential and an applied radial electric field as the tools to generate a spontaneously quantized spin current in an otherwise spin unpolarized 2D metal. A long cylindrical solenoid lies normally through the inner radius of a 2D metallic Corbino disk. The currentISsurrounding the solenoid produces an azimuthal magnetic vector potential but no magnetic field in the disk. In addition, a radial electric field is generated across the disk by imposing either a potential differenceΔvor a radial charge currentIacross its inner and outer radii. Combined changes inISand in eitherΔvorIgenerate spontaneously quantized azimuthal charge and spin currents. The experiment is designed to measure these quantized azimuthal charge and spin currents in the disk consistently. The quantum Hamiltonians for both experiments are solved exactly. A method to control the Joule heating is presented, which could potentially allow the Type-II QSH measurements to be made at room temperature.

5.
J Phys Condens Matter ; 33(8): 085802, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33171440

RESUMEN

To construct a microscopic theory of electrons and holes in anisotropic conductors that self-consistently treats their band effective mass anisotropy with their interactions with applied electric and magnetic fields, the Dirac equation is extended for an electron or hole in an orthorhombically-anisotropic conduction band. Its covariance is established both by a modified version of the Klemm-Clem transformations to a space in which it is isotropic, and also in its fully anisotropic form by making the most general proper and improper Lorentz transformations, proving its validity in both the relativistic and non-relativistic limits. The appropriate Foldy-Wouthuysen transformations are extended to expand about the non-relativistic Hamiltonian limit to fourth order in the inverse of the particle's Einstein rest energy. The results have important consequences for magnetic measurements of many classes of clean anisotropic semiconductors, metals, and superconductors. In all of these cases, the Zeeman interaction is found to depend strongly upon the effective mass anisotropy. When an electron or hole is traveling in an atomically thin one-dimensional conduction band, its Zeeman, spin-orbit, and quantum spin Hall interactions are vanishingly small. Accurate expressions for the Zeeman, spin-orbit and quantum spin Hall interactions for two-dimensional conductors are provided.

6.
Phys Rev E ; 99(3-1): 032141, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30999472

RESUMEN

We investigate size effects in phononic energy transport in a system of two nanoparticles interconnected by a molecule and attached to thermal contacts also by molecules. In the considered closed system, the nanoparticles and contacts are described by ensembles of finite numbers of harmonic oscillators within the Drude-Ullersma model. The macroscopic character of the contacts is simulated by a large value of the ratio Δ/Δ_{B}=n (n>100) of mode spacings Δ and Δ_{B} corresponding to the nanoparticles and contacts, respectively. Quasistatic energy transport on the timescale Δ^{-1} is investigated. Equations describing the dynamics of the averaged eigenmode energies that belong to the nanoparticles and contacts are derived and solved. The resulting expressions for the energy current exiting (entering) the contacts as well as the energy current between the nanoparticles are obtained and investigated. The latter current accounts for energy accumulation by (depletion from) the nanoparticles. The finite size effects result in reversibility features and peculiarities at time moments t=2πℓΔ^{-1} for non-negative integers ℓ. They are qualitatively the same as in a previously studied system of two equal nanoparticles mediated by a molecule, despite the presence of the macroscopic contacts. The thermal conductance of the whole nanojunction is derived and explored. The energy currents and thermal conductance of the nanojunction in a case when its parameters are known from the experiment are computed using the developed model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...