Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucl Med Biol ; 43(5): 280-7, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27150030

RESUMEN

The application of radionuclide-labeled biomolecules such as monoclonal antibodies or antibody fragments for imaging purposes is called immunoscintigraphy. More specifically, when the nuclides used are positron emitters, such as zirconium-89, the technique is referred to as immuno-PET. Currently, there is an urgent need for radionuclides with a half-life which correlates well with the biological kinetics of the biomolecules under question and which can be attached to the proteins by robust labeling chemistry. (90)Nb is a promising candidate for in vivo immuno-PET, due its half-life of 14.6h and low ß(+) energy of Emean=0.35MeV per decay. (95)Nb on the other hand, is a convenient alternative for longer-term ex vivo biodistribution studies, due to its longer half-life of (t½=35days) and its convenient, lower-cost production (reactor-based production). In this proof-of-principle work, the monoclonal antibody bevacizumab (Avastin(®)) was labeled with (95/90)Nb and in vitro and in vivo stability was evaluated in normal Swiss mice and in tumor-bearing SCID mice. Initial ex vivo experiments with (95)Nb-bevacizumab showed adequate tumor uptake, however at the same time high uptake in the liver, spleen and kidneys was observed. In order to investigate whether this behavior is due to instability of (⁎)Nb-bevacizumab or to the creation of other (⁎)Nb species in vivo, we performed biodistribution studies of (95)Nb-oxalate, (95)Nb-chloride and (95)Nb-Df. These potential metabolite species did not show any specific uptake, apart from bone accumulation for (95)Nb-oxalate and (95)Nb-chloride, which, interestingly, may serve as an "indicator" for the release of (90)Nb from labeled biomolecules. Concerning the initial uptake of (95)Nb-bevacizumab in non-tumor tissue, biodistribution of a higher specific activity radiolabeled antibody sample did show only negligible uptake in the liver, spleen, kidneys or bones. In-vivo imaging of a tumor-bearing SCID mouse after injection with (90)Nb-bevacizumab was acquired on an experimental small-animal PET camera, and indeed showed localization of the radiotracer in the tumor area. It is the first time that such results are described in the literature, and indicates promise of application of (90)Nb-labeled antibodies for the purposes of immuno-PET.


Asunto(s)
Marcaje Isotópico/métodos , Niobio/química , Radioisótopos , Animales , Bevacizumab/química , Cloruros/química , Deferoxamina/química , Estabilidad de Medicamentos , Femenino , Semivida , Ratones , Niobio/farmacocinética , Oxalatos/química , Tomografía de Emisión de Positrones , Distribución Tisular
2.
J Nucl Med ; 46(4): 691-9, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15809493

RESUMEN

UNLABELLED: Bombesin (BN), a 14-amino-acid peptide, shows high affinity for the human gastrin-releasing peptide receptor (GRP-r), which is overexpressed on several types of cancer, including prostate, breast, gastrointestinal, and small cell lung cancer. Thus, radiolabeled BN or BN analogs may prove to be specific tracers for diagnostic and therapeutic targeting of GRP-r-positive tumors in nuclear medicine. This study evaluated a novel BN analog labeled with the positron emitter 68Ga for receptor imaging with PET. METHODS: DOTA-PEG2-[D-Tyr6,beta-Ala11,Thi13,Nle14] BN(6-14) amide (BZH3) (DOTA is 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid; PEG is ethyleneglycol (2-aminoethyl)carboxymethyl ether) was synthetized using the Fmoc strategy and radiolabeled with either 67Ga or 177Lu for in vitro and biodistribution experiments. 68Ga for PET was obtained from a 68Ge/68Ga generator. In vitro binding, internalization, and efflux were determined using the pancreatic tumor cell line AR42J. Biodistribution of the peptide as a function of time and dose was studied in AR42J tumor-bearing mice. RESULTS: In vitro assays demonstrated a high affinity of 67Ga-BZH3 (dissociation constant = 0.46 nmol/L), a rapid internalization (70% of total cell-associated activity was endocytosed after a 15-min incubation), and an intracellular retention half-life (t1/2) of the 67Ga activity of 16.5 +/- 2.4 h. Biodistribution indicated a dose-dependent uptake in the tumor and a prolonged tumor residence time (t1/2 approximately 16 h). Clearance from GRP-r-negative tissues was fast, resulting in high tumor-to-tissue ratios as early as 1 h after injection. Replacing 67Ga by 177Lu, a therapeutic radionuclide, for peptide labeling resulted in a slightly reduced (approximately 20%) tumor uptake and tumor residence time of 177Lu-BZH3. In contrast, 177Lu decline in the pancreas was significantly accelerated by a factor of 3 compared with that of 67Ga. PET of mice with 68Ga-BZH3 clearly delineated tumors in the mediastinal area. CONCLUSION: The promising in vivo data of 68Ga-BZH3 indicate its potential for an improved localization of GRP-r-positive tumors and also suggest its application in patients. PET may also be favorably used for GRP-r density determination, a prerequisite for therapeutic applications.


Asunto(s)
Péptido Liberador de Gastrina/metabolismo , Oligopéptidos/farmacocinética , Compuestos Organometálicos/farmacocinética , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Femenino , Tasa de Depuración Metabólica , Ratones , Ratones Desnudos , Especificidad de Órganos , Radiofármacos/farmacocinética , Ratas , Distribución Tisular , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA