Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Med Surg (Lond) ; 86(5): 2425-2431, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694342

RESUMEN

Background: Impaired kidney function is frequently observed in patients following cardiopulmonary bypass (CPB). Our group has previously linked blood transfusion to acute declines in S-nitroso haemoglobin (SNO-Hb; the main regulator of tissue oxygen delivery), reductions in intraoperative renal blood flow, and postoperative kidney dysfunction. While not all CPB patients receive blood, kidney injury is still common. We hypothesized that the CPB procedure itself may negatively impact SNO-Hb levels leading to renal dysfunction. Materials and methods: After obtaining written informed consent, blood samples were procured immediately before and after CPB, and on postoperative day (POD) 1. SNO-Hb levels, renal function (estimated glomerular filtration rate; eGFR), and plasma erythropoietin (EPO) concentrations were quantified. Additional outcome data were extracted from the patients' medical records. Results: Twenty-seven patients were enroled, three withdrew consent, and one was excluded after developing bacteremia. SNO-Hb levels declined after surgery and were directly correlated with declines in eGFR (R=0.48). Conversely, plasma EPO concentrations were elevated and inversely correlated with SNO-Hb (R=-0.53) and eGFR (R=-0.55). Finally, ICU stay negatively correlated with SNO-Hb concentration (R=-0.32). Conclusion: SNO-Hb levels are reduced following CPB in the absence of allogenic blood transfusion and are predictive of decreased renal function and prolonged ICU stay. Thus, therapies directed at maintaining or increasing SNO-Hb levels may improve outcomes in adult patients undergoing cardiac surgery.

2.
STAR Protoc ; 4(4): 102430, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37925633

RESUMEN

S-nitrosothiol (SNO)-Resin Assisted Capture (SNO-RAC) relies on a Thiopropyl Sepharose resin to identify S-nitrosylated proteins (SNO-proteins) and sites of S-nitrosylation. Here, we present a protocol for preparing Thiopropyl Sepharose resin with efficiency of SNO-protein capture comparable to the discontinued commercial version. We describe steps for amine coupling, disulfide reduction, and generation of thiol reactive resin. We then detail quality control procedures. This resin is also suitable for Acyl-RAC assays to capture palmitoylated proteins. For complete details on the use and execution of the SNO-RAC protocol, please refer to Forrester et al.,1 Fonseca et al.,2 and Seth et al.3.


Asunto(s)
Proteínas , S-Nitrosotioles , Sefarosa , Proteínas/metabolismo , S-Nitrosotioles/metabolismo , Compuestos de Sulfhidrilo
3.
J Med Chem ; 66(8): 5657-5668, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37027003

RESUMEN

Acute kidney injury (AKI) is associated with high morbidity and mortality, and no drugs are available clinically. Metabolic reprogramming resulting from the deletion of S-nitroso-coenzyme A reductase 2 (SCoR2; AKR1A1) protects mice against AKI, identifying SCoR2 as a potential drug target. Of the few known inhibitors of SCoR2, none are selective versus the related oxidoreductase AKR1B1, limiting therapeutic utility. To identify SCoR2 (AKR1A1) inhibitors with selectivity versus AKR1B1, analogs of the nonselective (dual 1A1/1B1) inhibitor imirestat were designed, synthesized, and evaluated. Among 57 compounds, JSD26 has 10-fold selectivity for SCoR2 versus AKR1B1 and inhibits SCoR2 potently through an uncompetitive mechanism. When dosed orally to mice, JSD26 inhibited SNO-CoA metabolic activity in multiple organs. Notably, intraperitoneal injection of JSD26 in mice protected against AKI through S-nitrosylation of pyruvate kinase M2 (PKM2), whereas imirestat was not protective. Thus, selective inhibition of SCoR2 has therapeutic potential to treat acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Oxidorreductasas , Ratones , Animales , Oxidorreductasas/metabolismo , Coenzima A/metabolismo , Riñón/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(9): e2220769120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812211

RESUMEN

S-Nitrosohemoglobin (SNO-Hb) is unique among vasodilators in coupling blood flow to tissue oxygen requirements, thus fulfilling an essential function of the microcirculation. However, this essential physiology has not been tested clinically. Reactive hyperemia following limb ischemia/occlusion is a standard clinical test of microcirculatory function, which has been ascribed to endothelial nitric oxide (NO). However, endothelial NO does not control blood flow governing tissue oxygenation, presenting a major quandary. Here we show in mice and humans that reactive hyperemic responses (i.e., reoxygenation rates following brief ischemia/occlusion) are in fact dependent on SNO-Hb. First, mice deficient in SNO-Hb (i.e., carrying C93A mutant Hb refractory to S-nitrosylation) showed blunted muscle reoxygenation rates and persistent limb ischemia during reactive hyperemia testing. Second, in a diverse group of humans-including healthy subjects and patients with various microcirculatory disorders-strong correlations were found between limb reoxygenation rates following occlusion and both arterial SNO-Hb levels (n = 25; P = 0.042) and SNO-Hb/total HbNO ratios (n = 25; P = 0.009). Secondary analyses showed that patients with peripheral artery disease had significantly reduced SNO-Hb levels and blunted limb reoxygenation rates compared with healthy controls (n = 8 to 11/group; P < 0.05). Low SNO-Hb levels were also observed in sickle cell disease, where occlusive hyperemic testing was deemed contraindicated. Altogether, our findings provide both genetic and clinical support for the role of red blood cells in a standard test of microvascular function. Our results also suggest that SNO-Hb is a biomarker and mediator of blood flow governing tissue oxygenation. Thus, increases in SNO-Hb may improve tissue oxygenation in patients with microcirculatory disorders.


Asunto(s)
Hiperemia , Humanos , Ratones , Animales , Microcirculación , Hemoglobinas/genética , Eritrocitos/fisiología , Oxígeno , Sujetos de Investigación , Óxido Nítrico/fisiología
5.
Mol Cell ; 82(16): 3089-3102.e7, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35931084

RESUMEN

The ß2-adrenergic receptor (ß2AR), a prototypic G-protein-coupled receptor (GPCR), is a powerful driver of bronchorelaxation, but the effectiveness of ß-agonist drugs in asthma is limited by desensitization and tachyphylaxis. We find that during activation, the ß2AR is modified by S-nitrosylation, which is essential for both classic desensitization by PKA as well as desensitization of NO-based signaling that mediates bronchorelaxation. Strikingly, S-nitrosylation alone can drive ß2AR internalization in the absence of traditional agonist. Mutant ß2AR refractory to S-nitrosylation (Cys265Ser) exhibits reduced desensitization and internalization, thereby amplifying NO-based signaling, and mice with Cys265Ser mutation are resistant to bronchoconstriction, inflammation, and the development of asthma. S-nitrosylation is thus a central mechanism in ß2AR signaling that may be operative widely among GPCRs and targeted for therapeutic gain.


Asunto(s)
Asma , Animales , Asma/inducido químicamente , Asma/genética , Ratones , Transducción de Señal
6.
J Pharmacol Exp Ther ; 382(1): 1-10, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35512801

RESUMEN

Classic physiology links tissue hypoxia to oxygen delivery through control of microvascular blood flow (autoregulation of blood flow). Hemoglobin (Hb) serves both as the source of oxygen and the mediator of microvascular blood flow through its ability to release vasodilatory S-nitrosothiol (SNO) in proportion to degree of hypoxia. ß-globin Cys93Ala (ßCys93Ala) mutant mice deficient in S-nitrosohemoglobin (SNO-Hb) show profound deficits in microvascular blood flow and tissue oxygenation that recapitulate microcirculatory dysfunction in multiple clinical conditions. However, the means to replete SNO in mouse red blood cells (RBCs) to restore RBC function is not known. In particular, although methods have been developed to selectively S-nitrosylate ßCys93 in human Hb and intact human RBCs, conditions have not been optimized for mouse RBCs that are used experimentally. Here we show that loading SNO onto Hb in mouse RBC lysates can be achieved with high stoichiometry and ß-globin selectivity. However, S-nitrosylation of Hb within intact mouse RBCs is ineffective under conditions that work well with human RBCs, and levels of metHb are prohibitively high. We developed an optimized method that loads SNO in mouse RBCs to maintain vasodilation under hypoxia and shows that loss of SNO loading in ßCys93Ala mutant RBCs results in reduced vasodilation. We also demonstrate that differences in SNO/met/nitrosyl Hb stoichiometry can account for differences in RBC function among studies. RBCs loaded with quasi-physiologic amounts of SNO-Hb will produce vasodilation proportionate to hypoxia, whereas RBCs loaded with higher amounts lose allosteric regulation, thus inducing vasodilation at both high and low oxygen level. SIGNIFICANCE STATEMENT: Red blood cells from mice exhibit poor hemoglobin S-nitrosylation under conditions used for human RBCs, frustrating tests of vasodilatory activity. Using an optimized S-nitrosylation protocol, mouse RBCs exhibit hypoxic vasodilation that is significantly reduced in hemoglobin ßCys93Ala mutant RBCs that cannot carry S-nitrosothiol allosterically, providing genetic validation for the role of ßCys93 in oxygen delivery.


Asunto(s)
S-Nitrosotioles , Vasodilatación , Animales , Eritrocitos , Hemoglobinas , Hipoxia , Ratones , Microcirculación , Óxido Nítrico , Oxígeno , Vasodilatación/fisiología , Globinas beta/genética
7.
Sci Rep ; 12(1): 6639, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459243

RESUMEN

Current human donor care protocols following death by neurologic criteria (DNC) can stabilize macro-hemodynamic parameters but have minimal ability to preserve systemic blood flow and microvascular oxygen delivery. S-nitrosylated hemoglobin (SNO-Hb) within red blood cells (RBCs) is the main regulator of tissue oxygenation (StO2). Based on various pre-clinical studies, we hypothesized that brain death (BD) would decrease post-mortem SNO-Hb levels to negatively-impact StO2 and reduce organ yields. We tracked SNO-Hb and tissue oxygen in 61 DNC donors. After BD, SNO-Hb levels were determined to be significantly decreased compared to healthy humans (p = 0·003) and remained reduced for the duration of the monitoring period. There was a positive correlation between SNO-Hb and StO2 (p < 0.001). Furthermore, SNO-Hb levels correlated with and were prognostic for the number of organs transplanted (p < 0.001). These clinical findings provide additional support for the concept that BD induces a systemic impairment of S-nitrosylation that negatively impacts StO2 and reduces organ yield from DNC human donors. Exogenous S-nitrosylating agents are in various stages of clinical development. The results presented here suggest including one or more of these agents in donor support regimens could increase the number and quality of organs available for transplant.


Asunto(s)
Hemoglobinas , Oxígeno , Eritrocitos , Hemodinámica , Hemoglobinas/metabolismo , Hemoglobinas/farmacología , Humanos , Nitrosación
8.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34914637

RESUMEN

Systemic hypoxia is characterized by peripheral vasodilation and pulmonary vasoconstriction. However, the system-wide mechanism for signaling hypoxia remains unknown. Accumulating evidence suggests that hemoglobin (Hb) in RBCs may serve as an O2 sensor and O2-responsive NO signal transducer to regulate systemic and pulmonary vascular tone, but this remains unexamined at the integrated system level. One residue invariant in mammalian Hbs, ß-globin cysteine93 (ßCys93), carries NO as vasorelaxant S-nitrosothiol (SNO) to autoregulate blood flow during O2 delivery. ßCys93Ala mutant mice thus exhibit systemic hypoxia despite transporting O2 normally. Here, we show that ßCys93Ala mutant mice had reduced S-nitrosohemoglobin (SNO-Hb) at baseline and upon targeted SNO repletion and that hypoxic vasodilation by RBCs was impaired in vitro and in vivo, recapitulating hypoxic pathophysiology. Notably, ßCys93Ala mutant mice showed marked impairment of hypoxic peripheral vasodilation and developed signs of pulmonary hypertension with age. Mutant mice also died prematurely with cor pulmonale (pulmonary hypertension with right ventricular dysfunction) when living under low O2. Altogether, we identify a major role for RBC SNO in clinically relevant vasodilatory responses attributed previously to endothelial NO. We conclude that SNO-Hb transduces the integrated, system-wide response to hypoxia in the mammalian respiratory cycle, expanding a core physiological principle.


Asunto(s)
Cistatina C/genética , ADN/genética , Hemoglobinas/metabolismo , Hipertensión Pulmonar/genética , Hipoxia/complicaciones , Mutación , Vasodilatación/fisiología , Animales , Cistatina C/metabolismo , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Hipoxia/genética , Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes
9.
Ann Surg ; 274(6): e610-e615, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31804390

RESUMEN

OBJECTIVE: To determine if addition of the S-nitrosylating agent ethyl nitrite (ENO) to the preservation solution can improve perfusion parameters in pumped human kidneys. BACKGROUND: A significant percentage of actively stored kidneys experience elevations in resistance and decreases in flow rate during the ex vivo storage period. Preclinical work indicates that renal status after brain death is negatively impacted by inflammation and reduced perfusion-processes regulated by protein S-nitrosylation. To translate these findings, we added ENO to the preservation solution in an attempt to reverse the perfusion deficits observed in nontransplanted pumped human kidneys. METHODS: After obtaining positive proof-of-concept results with swine kidneys, we studied donated human kidneys undergoing hypothermic pulsatile perfusion deemed unsuitable for transplantation. Control kidneys continued to be pumped a 4°C (ie, standard of care). In the experimental group, the preservation solution was aerated with 50 ppm ENO in nitrogen. Flow rate and perfusion were recorded for 10 hours followed by biochemical analysis of the kidney tissue. RESULTS: In controls, perfusion was constant during the monitoring period (ie, flow rate remained low and resistance stayed high). In contrast, the addition of ENO produced significant and sustained reductions in resistance and increases in flow rate. ENO-treated kidneys had higher levels of cyclic guanosine monophosphate, potentially explaining the perfusion benefits, and increased levels of interleukin-10, suggestive of an anti-inflammatory effect. CONCLUSIONS: S-Nitrosylation therapy restored the microcirculation and thus improved overall organ perfusion. Inclusion of ENO in the renal preservation solution holds promise to increase the number and quality of kidneys available for transplant.


Asunto(s)
Riñón/irrigación sanguínea , Microcirculación , Nitritos/administración & dosificación , Soluciones Preservantes de Órganos/administración & dosificación , Preservación de Órganos/métodos , Animales , GMP Cíclico/metabolismo , Humanos , Interleucina-10/metabolismo , Riñón/metabolismo , Óxido Nítrico/metabolismo , Prueba de Estudio Conceptual , Porcinos
10.
Antioxid Redox Signal ; 32(12): 803-816, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-31691575

RESUMEN

Significance: S-nitrosylation, the post-translational modification by nitric oxide (NO) to form S-nitrosothiols (SNOs), regulates diverse aspects of cellular function, and aberrant S-nitrosylation (nitrosative stress) is implicated in disease, from neurodegeneration to cancer. Essential roles for S-nitrosylation have been demonstrated in microbes, plants, and animals; notably, bacteria have often served as model systems for elucidation of general principles. Recent Advances: Recent conceptual advances include the idea of a molecular code through which proteins sense and differentiate S-nitrosothiol (SNO) from alternative oxidative modifications, providing the basis for specificity in SNO signaling. In Escherichia coli, S-nitrosylation relies on an enzymatic cascade that regulates, and is regulated by, the transcription factor OxyR under anaerobic conditions. S-nitrosylated OxyR activates an anaerobic regulon of >100 genes that encode for enzymes that both mediate S-nitrosylation and protect against nitrosative stress. Critical Issues: Mitochondria originated from endosymbiotic bacteria and generate NO under hypoxic conditions, analogous to conditions in E. coli. Nitrosative stress in mitochondria has been implicated in Alzheimer's and Parkinson's disease, among others. Many proteins that are S-nitrosylated in mitochondria are also S-nitrosylated in E. coli. Insights into enzymatic regulation of S-nitrosylation in E. coli may inform the identification of disease-relevant regulatory machinery in mammalian systems. Future Directions: Using E. coli as a model system, in-depth analysis of the anaerobic response controlled by OxyR may lead to the identification of enzymatic mechanisms regulating S-nitrosylation in particular, and hypoxic signaling more generally, providing novel insights into analogous mechanisms in mammalian cells and within dysfunctional mitochondria that characterize neurodegenerative diseases.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Óxido Nítrico/metabolismo , Estrés Nitrosativo , Proteínas Represoras/metabolismo , Anaerobiosis , Animales , Humanos , Mitocondrias/metabolismo , S-Nitrosotioles/metabolismo
11.
J Biol Chem ; 294(48): 18285-18293, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31649033

RESUMEN

Oxidative modification of Cys residues by NO results in S-nitrosylation, a ubiquitous post-translational modification and a primary mediator of redox-based cellular signaling. Steady-state levels of S-nitrosylated proteins are largely determined by denitrosylase enzymes that couple NAD(P)H oxidation with reduction of S-nitrosothiols, including protein and low-molecular-weight (LMW) S-nitrosothiols (S-nitroso-GSH (GSNO) and S-nitroso-CoA (SNO-CoA)). SNO-CoA reductases require NADPH, whereas enzymatic reduction of GSNO can involve either NADH or NADPH. Notably, GSNO reductase (GSNOR, Adh5) accounts for most NADH-dependent GSNOR activity, whereas NADPH-dependent GSNOR activity is largely unaccounted for (CBR1 mediates a minor portion). Here, we de novo purified NADPH-coupled GSNOR activity from mammalian tissues and identified aldo-keto reductase family 1 member A1 (AKR1A1), the archetypal mammalian SNO-CoA reductase, as a primary mediator of NADPH-coupled GSNOR activity in these tissues. Kinetic analyses suggested an AKR1A1 substrate preference of SNO-CoA > GSNO. AKR1A1 deletion from murine tissues dramatically lowered NADPH-dependent GSNOR activity. Conversely, GSNOR-deficient mice had increased AKR1A1 activity, revealing potential cross-talk among GSNO-dependent denitrosylases. Molecular modeling and mutagenesis of AKR1A1 identified Arg-312 as a key residue mediating the specific interaction with GSNO; in contrast, substitution of the SNO-CoA-binding residue Lys-127 minimally affected the GSNO-reducing activity of AKR1A1. Together, these findings indicate that AKR1A1 is a multi-LMW-SNO reductase that can distinguish between and metabolize the two major LMW-SNO signaling molecules GSNO and SNO-CoA, allowing for wide-ranging control of protein S-nitrosylation under both physiological and pathological conditions.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Aldehído Reductasa/metabolismo , NADP/metabolismo , Óxido Nítrico/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Reductasa/genética , Animales , Coenzima A/metabolismo , Humanos , Cinética , Mamíferos , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , S-Nitrosotioles/metabolismo , Transducción de Señal
12.
PLoS One ; 14(8): e0221777, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31469867

RESUMEN

RATIONALE: Inhaled nitric oxide (NO) exerts a variety of effects through metabolites and these play an important role in regulation of hemodynamics in the body. A detailed investigation into the generation of these metabolites has been overlooked. OBJECTIVES: We investigated the kinetics of nitrite and S-nitrosothiol-hemoglobin (SNO-Hb) in plasma derived from inhaled NO subjects and how this modifies the cutaneous microvascular response. FINDINGS: We enrolled 15 healthy volunteers. Plasma nitrite levels at baseline and during NO inhalation (15 minutes at 40 ppm) were 102 (86-118) and 114 (87-129) nM, respectively. The nitrite peak occurred at 5 minutes of discontinuing NO (131 (104-170) nM). Plasma nitrate levels were not significantly different during the study. SNO-Hb molar ratio levels at baseline and during NO inhalation were 4.7E-3 (2.5E-3-5.8E-3) and 7.8E-3 (4.1E-3-13.0E-3), respectively. Levels of SNO-Hb continued to climb up to the last study time point (30 min: 10.6E-3 (5.3E-3-15.5E-3)). The response to acetylcholine iontophoresis both before and during NO inhalation was inversely associated with the SNO-Hb level (r: -0.57, p = 0.03, and r: -0.54, p = 0.04, respectively). CONCLUSIONS: Both nitrite and SNO-Hb increase during NO inhalation. Nitrite increases first, followed by a more sustained increase in Hb-SNO. Nitrite and Hb-SNO could be a mobile reservoir of NO with potential implications on the systemic microvasculature.


Asunto(s)
Inhalación , Metaboloma , Microvasos/metabolismo , Óxido Nítrico/análisis , Biomarcadores , Voluntarios Sanos , Humanos , Cinética , Microcirculación , Proyectos Piloto , Piel/irrigación sanguínea
13.
Nature ; 570(7759): E23, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31089212

RESUMEN

Change history: In Fig. 1j of this Letter, one data point was inadvertently omitted from the graph for the acute kidney injury (AKI), double knockout (-/-), S-nitrosothiol (SNO) condition at a nitrosylation level of 25.9 pmol mg-1 and the statistical significance given of P = 0.0221 was determined by Fisher's test instead of P = 0.0032 determined by Tukey's test (with normalization for test-day instrument baseline). Figure 1 and its Source Data have been corrected online.

14.
Nature ; 565(7737): 96-100, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30487609

RESUMEN

Endothelial nitric oxide synthase (eNOS) is protective against kidney injury, but the molecular mechanisms of this protection are poorly understood1,2. Nitric oxide-based cellular signalling is generally mediated by protein S-nitrosylation, the oxidative modification of Cys residues to form S-nitrosothiols (SNOs). S-nitrosylation regulates proteins in all functional classes, and is controlled by enzymatic machinery that includes S-nitrosylases and denitrosylases, which add and remove SNO from proteins, respectively3,4. In Saccharomyces cerevisiae, the classic metabolic intermediate co-enzyme A (CoA) serves as an endogenous source of SNOs through its conjugation with nitric oxide to form S-nitroso-CoA (SNO-CoA), and S-nitrosylation of proteins by SNO-CoA is governed by its cognate denitrosylase, SNO-CoA reductase (SCoR)5. Mammals possess a functional homologue of yeast SCoR, an aldo-keto reductase family member (AKR1A1)5 with an unknown physiological role. Here we report that the SNO-CoA-AKR1A1 system is highly expressed in renal proximal tubules, where it transduces the activity of eNOS in reprogramming intermediary metabolism, thereby protecting kidneys against acute kidney injury. Specifically, deletion of Akr1a1 in mice to reduce SCoR activity increased protein S-nitrosylation, protected against acute kidney injury and improved survival, whereas this protection was lost when Enos (also known as Nos3) was also deleted. Metabolic profiling coupled with unbiased mass spectrometry-based SNO-protein identification revealed that protection by the SNO-CoA-SCoR system is mediated by inhibitory S-nitrosylation of pyruvate kinase M2 (PKM2) through a novel locus of regulation, thereby balancing fuel utilization (through glycolysis) with redox protection (through the pentose phosphate shunt). Targeted deletion of PKM2 from mouse proximal tubules recapitulated precisely the protective and mechanistic effects of S-nitrosylation in Akr1a1-/- mice, whereas Cys-mutant PKM2, which is refractory to S-nitrosylation, negated SNO-CoA bioactivity. Our results identify a physiological function of the SNO-CoA-SCoR system in mammals, describe new regulation of renal metabolism and of PKM2 in differentiated tissues, and offer a novel perspective on kidney injury with therapeutic implications.


Asunto(s)
Lesión Renal Aguda/enzimología , Lesión Renal Aguda/prevención & control , Coenzima A/metabolismo , Ingeniería Metabólica , Oxidorreductasas/metabolismo , Aldehído Reductasa/deficiencia , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Animales , Línea Celular , Femenino , Glucólisis , Células HEK293 , Humanos , Túbulos Renales Proximales/enzimología , Masculino , Ratones , Mutación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato , Multimerización de Proteína , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
15.
Mol Cell ; 69(3): 451-464.e6, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29358078

RESUMEN

S-nitrosylation, the oxidative modification of Cys residues by nitric oxide (NO) to form S-nitrosothiols (SNOs), modifies all main classes of proteins and provides a fundamental redox-based cellular signaling mechanism. However, in contrast to other post-translational protein modifications, S-nitrosylation is generally considered to be non-enzymatic, involving multiple chemical routes. We report here that endogenous protein S-nitrosylation in the model organism E. coli depends principally upon the enzymatic activity of the hybrid cluster protein Hcp, employing NO produced by nitrate reductase. Anaerobiosis on nitrate induces both Hcp and nitrate reductase, thereby resulting in the S-nitrosylation-dependent assembly of a large interactome including enzymes that generate NO (NO synthase), synthesize SNO-proteins (SNO synthase), and propagate SNO-based signaling (trans-nitrosylases) to regulate cell motility and metabolism. Thus, protein S-nitrosylation by NO in E. coli is essentially enzymatic, and the potential generality of the multiplex enzymatic mechanism that we describe may support a re-conceptualization of NO-based cellular signaling.


Asunto(s)
Nitrosación/fisiología , S-Nitrosotioles/metabolismo , Cisteína/metabolismo , Escherichia coli , Proteínas de Escherichia coli , Óxido Nítrico/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional/fisiología , Proteínas/metabolismo , Proteolisis , Proteómica/métodos , Transducción de Señal
16.
Sci Rep ; 7(1): 16163, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170410

RESUMEN

Nitric oxide (NO) produced by endothelial cells in response to cytokines displays anti-inflammatory activity by preventing the adherence, migration and activation of neutrophils. The molecular mechanism by which NO operates at the blood-endothelium interface to exert anti-inflammatory properties is largely unknown. Here we show that on endothelial surfaces, NO is associated with the sulfhydryl-rich protein tissue transglutaminase (TG2), thereby endowing the membrane surfaces with anti-inflammatory properties. We find that tumor necrosis factor-α-stimulated neutrophil adherence is opposed by TG2 molecules that are bound to the endothelial surface. Alkylation of cysteine residues in TG2 or inhibition of endothelial NO synthesis renders the surface-bound TG2 inactive, whereas specific, high affinity binding of S-nitrosylated TG2 (SNO-TG2) to endothelial surfaces restores the anti-inflammatory properties of the endothelium, and reconstitutes the activity of endothelial-derived NO. We also show that SNO-TG2 is present in healthy tissues and that it forms on the membranes of shear-activated endothelial cells. Thus, the anti-inflammatory mechanism that prevents neutrophils from adhering to endothelial cells is identified with TG2 S-nitrosylation at the endothelial cell-blood interface.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neutrófilos/metabolismo , Óxido Nítrico/metabolismo , Transglutaminasas/metabolismo , Adhesión Celular/fisiología , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Neutrófilos/citología , Proteína Glutamina Gamma Glutamiltransferasa 2
17.
Infect Immun ; 85(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28674030

RESUMEN

Artesunate remains the mainstay of treatment for cerebral malaria, but it is less effective in later stages of disease when the host inflammatory response and blood-brain barrier integrity dictate clinical outcomes. Nitric oxide (NO) is an important regulator of inflammation and microvascular integrity, and impaired NO bioactivity is associated with fatal outcomes in malaria. Endogenous NO bioactivity in mammals is largely mediated by S-nitrosothiols (SNOs). Based on these observations, we hypothesized that animals deficient in the SNO-metabolizing enzyme, S-nitrosoglutathione reductase (GSNOR), which exhibit enhanced S-nitrosylation, would have improved outcomes in a preclinical model of cerebral malaria. GSNOR knockout (KO) mice infected with Plasmodium berghei ANKA had significantly delayed mortality compared to WT animals (P < 0.0001), despite higher parasite burdens (P < 0.01), and displayed markedly enhanced survival versus the wild type (WT) when treated with the antimalarial drug artesunate (77% versus 38%; P < 0.001). Improved survival was associated with higher levels of protein-bound NO, decreased levels of CD4+ and CD8+ T cells in the brain, improved blood-brain barrier integrity, and improved coma scores, as well as higher levels of gamma interferon. GSNOR KO animals receiving WT bone marrow had significantly reduced survival following P. berghei ANKA infection compared to those receiving KO bone barrow (P < 0.001). Reciprocal transplants established that survival benefits of GSNOR deletion were attributable primarily to the T cell compartment. These data indicate a role for GSNOR in the host response to malaria infection and suggest that strategies to disrupt its activity will improve clinical outcomes by enhancing microvascular integrity and modulating T cell tissue tropism.


Asunto(s)
Alcohol Deshidrogenasa/deficiencia , Malaria Cerebral/patología , Plasmodium berghei/patogenicidad , Animales , Antimaláricos/administración & dosificación , Artemisininas/administración & dosificación , Artesunato , Modelos Animales de Enfermedad , Femenino , Malaria Cerebral/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Análisis de Supervivencia , Linfocitos T/inmunología , Resultado del Tratamiento
18.
Ann Vasc Surg ; 44: 317-324, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28495542

RESUMEN

BACKGROUND: Endoscopic vein harvest for lower extremity arterial bypass grafting has been questioned due to concern for endothelial damage during procurement. We sought to compare nitric oxide (NO)-mediated endothelial-dependent relaxation (EDR) in vein segments harvested using open surgical techniques (OH) versus endoscopic vein harvest (EH) techniques. METHODS: Saphenous vein segments were harvested for lower extremity bypass, and a single, minimally handled section of saphenous vein, free of branches, was taken from the end of the graft. Four 4-mm venous ring segments were then cut and mounted on force transducers. Segments were mounted in 37° oxygenated Krebs-Henseleit solution and maximally contracted using KCl. Individual ring segments that did not react to KCl were excluded from the study. Norepinephrine (NE) was used to achieve submaximal contraction. EDR was determined using increasing concentrations of bradykinin (BDK). Endothelial-independent relaxation (EIR) was confirmed using sodium nitroprusside. Two-way analysis of variance (ANOVA) was used to analyze differences between harvest techniques across BDK concentration and a Student's t-test was used to analyze single comparisons. RESULTS: Vein segments harvested from patients (n = 13) led to 28 viable rings that exhibited a positive reaction to KCl (11 rings; 5 patients EH vs. 17 rings; 8 patients OH). Both vein groups achieved moderate relaxation to maximal BDK concentration, [10-6 M]; (49.5% EH vs. 40.55% OH, P = 0.270). Analysis by 2-way ANOVA for mean % relaxation for BDK concentration [10-11-10-6 M] showed improved EDR in EH samples compared with OH (P = 0.029). Mean nitrite/nitrate (NO(x)) tissue bath concentration measurements post-BDK were 139.8 nM (EH) vs. 97.2 nM (OH; P = 0.264). Histology and positive factor VIII immunohistochemistry staining provided evidence for the presence of intact endothelium in our sample segments. EIR was preserved and was similar in the two groups. CONCLUSIONS: Endothelial function is preserved when utilizing endoscopic harvesting techniques. The advantages of minimally invasive vein procurement for lower extremity bypass can be obtained without concern for damaging venous endothelium.


Asunto(s)
Endoscopía , Endotelio Vascular/trasplante , Vena Safena/trasplante , Recolección de Tejidos y Órganos/métodos , Injerto Vascular/métodos , Procedimientos Quirúrgicos Vasculares , Vasodilatación , Anciano , Anciano de 80 o más Años , Relación Dosis-Respuesta a Droga , Endoscopía/efectos adversos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/metabolismo , Nitroprusiato/farmacología , Estudios Prospectivos , Vena Safena/efectos de los fármacos , Vena Safena/metabolismo , Vena Safena/fisiología , Recolección de Tejidos y Órganos/efectos adversos , Injerto Vascular/efectos adversos , Procedimientos Quirúrgicos Vasculares/efectos adversos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
19.
J Vasc Surg ; 66(1): 187-194, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28366306

RESUMEN

OBJECTIVE: Endothelial function is improved by l-arginine (l-arg) supplementation in preclinical and clinical studies of mildly diseased vasculature; however, endothelial function and responsiveness to l-arg in severely diseased arteries is not known. Our objective was to evaluate the acute effects of catheter-directed l-arg delivery in patients with chronic lower extremity ischemia secondary to peripheral arterial disease. METHODS: The study enrolled 22 patients (45% male) with peripheral arterial disease (mean age, 62 years) requiring lower extremity angiography. Endothelium-dependent relaxation of patent but atherosclerotic superficial femoral arteries was measured using a combination of intravascular ultrasound (IVUS) imaging and a Doppler FloWire (Volcano Corporation, Rancho Cordova, Calif) during the infusion of incremental acetylcholine (10-6 to 10-4 molar concentration) doses. Patients received 50 mg (n = 3), 100 mg (n = 10), or 500 mg (n = 9) l-arg intra-arterially, followed by repeat endothelium-dependent relaxation measurement (limb volumetric flow). IVUS-derived virtual histology of the culprit vessel was also obtained. Endothelium-independent relaxation was measured using a nitroglycerin infusion. Levels of nitrogen oxides and arginine metabolites were measured by chemiluminescence and mass spectrometry, respectively. RESULTS: Patients tolerated limb l-arg infusion well. Serum arginine and ornithine levels increased by 43.6% ± 13.0% and 23.2% ± 10.3%, respectively (P < .005), and serum nitrogen oxides increased by 85% (P < .0001) after l-arg infusion. Average vessel area increased by 6.8% ± 1.3% with l-arg infusion (acetylcholine 10-4; P < .0001). Limb volumetric flow increased in all patients and was greater with l-arg supplementation by 130.9 ± 17.6, 136.9 ± 18.6, and 172.1 ± 24.8 mL/min, respectively, for each cohort. Maximal effects were seen with l-arg at 100 mg (32.8%). Arterial smooth muscle responsiveness to nitroglycerin was intact in all vessels (endothelium-independent relaxation, 137% ± 28% volume flow increase). IVUS-derived virtual histology indicated plaque volume was 14 ± 1.3 mm3/cm, and plaque stratification revealed a predominantly fibrous morphology (46.4%; necrotic core, 28.4%; calcium, 17.4%; fibrolipid, 6.6%). Plaque morphology did not correlate with l-arg responsiveness. CONCLUSIONS: Despite extensive atherosclerosis, endothelial function in diseased lower extremity human arteries can be enhanced by l-arg infusion secondary to increased nitric oxide bioactivity. Further studies of l-arg as a therapeutic modality in patients with endothelial dysfunction (ie, acute limb ischemia) are warranted.


Asunto(s)
Arginina/administración & dosificación , Endotelio Vascular/efectos de los fármacos , Arteria Femoral/efectos de los fármacos , Isquemia/tratamiento farmacológico , Extremidad Inferior/irrigación sanguínea , Enfermedad Arterial Periférica/tratamiento farmacológico , Vasodilatación/efectos de los fármacos , Vasodilatadores/administración & dosificación , Acetilcolina/administración & dosificación , Angiografía , Arginina/efectos adversos , Arginina/sangre , Enfermedad Crónica , Relación Dosis-Respuesta a Droga , Endotelio Vascular/fisiopatología , Femenino , Arteria Femoral/diagnóstico por imagen , Arteria Femoral/fisiopatología , Humanos , Infusiones Intraarteriales , Isquemia/diagnóstico por imagen , Isquemia/fisiopatología , Masculino , Persona de Mediana Edad , Óxidos de Nitrógeno/sangre , Nitroglicerina/administración & dosificación , Ohio , Ornitina/sangre , Enfermedad Arterial Periférica/diagnóstico por imagen , Enfermedad Arterial Periférica/fisiopatología , Placa Aterosclerótica , Estudios Prospectivos , Flujo Sanguíneo Regional , Factores de Tiempo , Resultado del Tratamiento , Ultrasonografía Doppler Dúplex , Ultrasonografía Intervencional , Vasodilatadores/efectos adversos , Vasodilatadores/sangre
20.
Proc Natl Acad Sci U S A ; 112(20): 6425-30, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25810253

RESUMEN

Oxygen delivery by Hb is essential for vertebrate life. Three amino acids in Hb are strictly conserved in all mammals and birds, but only two of those, a His and a Phe that stabilize the heme moiety, are needed to carry O2. The third conserved residue is a Cys within the ß-chain (ßCys93) that has been assigned a role in S-nitrosothiol (SNO)-based hypoxic vasodilation by RBCs. Under this model, the delivery of SNO-based NO bioactivity by Hb redefines the respiratory cycle as a triune system (NO/O2/CO2). However, the physiological ramifications of RBC-mediated vasodilation are unknown, and the apparently essential nature of ßCys93 remains unclear. Here we report that mice with a ßCys93Ala mutation are deficient in hypoxic vasodilation that governs blood flow autoregulation, the classic physiological mechanism that controls tissue oxygenation but whose molecular basis has been a longstanding mystery. Peripheral blood flow and tissue oxygenation are decreased at baseline in mutant animals and decline excessively during hypoxia. In addition, ßCys93Ala mutation results in myocardial ischemia under basal normoxic conditions and in acute cardiac decompensation and enhanced mortality during transient hypoxia. Fetal viability is diminished also. Thus, ßCys93-derived SNO bioactivity is essential for tissue oxygenation by RBCs within the respiratory cycle that is required for both normal cardiovascular function and circulatory adaptation to hypoxia.


Asunto(s)
Hipoxia/metabolismo , Oxígeno/metabolismo , Vasodilatación/fisiología , Globinas beta/genética , Globinas beta/metabolismo , Análisis de Varianza , Animales , Sistema Cardiovascular , Cartilla de ADN/genética , Ecocardiografía , Hemodinámica/fisiología , Ratones , Mutación Missense/genética , S-Nitrosotioles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...