Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Sustain ; 2(6): 1738-1752, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38845685

RESUMEN

Advancing towards alternative technologies for the sustainable production of hydrogen is a necessity for the successful integration of this potentially green fuel in the future. Photocatalytic and photoelectrochemical water splitting are promising concepts in this context. Over the past decades, researchers have successfully explored several materials classes, such as oxides, nitrides, and oxynitrides, in their quest for suitable photocatalysts with a focus on reaching higher efficiencies. However, to pave the way towards practicability, understanding degradation processes and reaching stability is essential, a domain where research has been scarcer. This perspective aims at providing an overview on recent progress concerning stability and degradation with a focus on (oxy)nitride photocatalysts and at providing insights into the opportunities and challenges coming along with the investigation of degradation processes and the attempts to improve the stability of photocatalysts.

2.
Small ; : e2310467, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552223

RESUMEN

Electroreduction of nitrate to ammonia provides an interesting pathway for wastewater treatment and valorization. Cu-based catalysts are active for the conversion of NO3 - to NO2 - but suffer from an inefficient hydrogenation process of NO2 -. Herein, CuxO/N-doped graphdiyne (CuxO/N-GDY) with pyridine N configuration are in situ prepared in one pot. Benefiting from the synergistic effect of pyridinic N in GDY and CuxO, the prepared CuxO/N-GDY tested in a commercial H-cell achieved a faradaic efficiency of 85% toward NH3 at -0.5 V versus RHE with a production rate of 340 µmol h-1 mgcat -1 in 0.1 M KNO3. When integrating the CuxO/N-GDY in an anion exchange membrane flow electrolyzer, a maximum Faradaic efficiency of 89% is achieved at a voltage of 2.3 V and the production rate is 1680 µmol h-1 mgcat -1 at 3.3 V in 0.1 M KNO3 at room temperature. Operation at 40 °C further promoted the overall reaction kinetics of NO3 - to NH3, but penalized its selectivity with respect to hydrogen evolution reaction. The high selectivity and production rate in this device configuration demonstrate its potential for industrial application.

3.
Commun Chem ; 7(1): 47, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443453

RESUMEN

A gas diffusion electrode (GDE) based CO2 electrolyzer shows enhanced CO2 transport to the catalyst surface, significantly increasing current density compared to traditional planar immersed electrodes. A two-dimensional model for the cathode side of a microfluidic CO2 to CO electrolysis device with a GDE is developed. The model, validated against experimental data, examines key operational parameters and electrode materials. It predicts an initial rise in CO partial current density (PCD), peaking at 75 mA cm-2 at -1.3 V vs RHE for a fully flooded catalyst layer, then declining due to continuous decrease in CO2 availability near the catalyst surface. Factors like electrolyte flow rate and CO2 gas mass flow rate influence PCD, with a trade-off between high CO PCD and CO2 conversion efficiency observed with increased CO2 gas flow. We observe that a significant portion of the catalyst layer remains underutilized, and suggest improvements like varying electrode porosity and anisotropic layers to enhance mass transport and CO PCD. This research offers insights into optimizing CO2 electrolysis device performance.

4.
EES Catal ; 1(5): 704-719, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-38013760

RESUMEN

Electrochemical conversion of CO2 to fuels and valuable products is one pathway to reduce CO2 emissions. Electrolyzers using gas diffusion electrodes (GDEs) show much higher current densities than aqueous phase electrolyzers, yet models for multi-physical transport remain relatively undeveloped, often relying on volume-averaged approximations. Many physical phenomena interact inside the GDE, which is a multiphase environment (gaseous reactants and products, liquid electrolyte, and solid catalyst), and a multiscale problem, where "pore-scale" phenomena affect observations at the "macro-scale". We present a direct (not volume-averaged) pore-level transport model featuring a liquid electrolyte domain and a gaseous domain coupled at the liquid-gas interface. Transport is resolved, in 2D, around individual nanoparticles comprising the catalyst layer, including the electric double layer and steric effects. The GDE behavior at the pore-level is studied in detail under various idealized catalyst geometries configurations, showing how the catalyst layer thickness, roughness, and liquid wetting behavior all contribute to (or restrict) the transport necessary for CO2 reduction. The analysis identifies several pathways to enhance GDE performance, opening the possibility for increasing the current density by an order of magnitude or more. The results also suggest that the typical liquid-gas interface in the GDE of experimental demonstrations form a filled front rather than a wetting film, the electrochemical reaction is not taking place at a triple-phase boundary but rather a thicker zone around the triple-phase boundary, the solubility reduction at high electrolyte concentrations is an important contributor to transport limitations, and there is considerable heterogeneity in the use of the catalyst. The model allows unprecedented visualization of the transport dynamics inside the GDE across multiple length scales, making it a key step forward on the path to understanding and enhancing GDEs for electrochemical CO2 reduction.

5.
Nat Commun ; 14(1): 3141, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280222

RESUMEN

Human deep space exploration is presented with multiple challenges, such as the reliable, efficient and sustainable operation of life support systems. The production and recycling of oxygen, carbon dioxide (CO2) and fuels are hereby key, as a resource resupply will not be possible. Photoelectrochemical (PEC) devices are investigated for the light-assisted production of hydrogen and carbon-based fuels from CO2 within the green energy transition on Earth. Their monolithic design and the sole reliance on solar energy makes them attractive for applications in space. Here, we establish the framework to evaluate PEC device performances on Moon and Mars. We present a refined Martian solar irradiance spectrum and establish the thermodynamic and realistic efficiency limits of solar-driven lunar water-splitting and Martian carbon dioxide reduction (CO2R) devices. Finally, we discuss the technological viability of PEC devices in space by assessing the performance combined with solar concentrator devices and explore their fabrication via in-situ resource utilization.

7.
ACS Appl Mater Interfaces ; 14(38): 43095-43108, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36122305

RESUMEN

The practical implementation of photoelectrochemical devices for hydrogen generation is limited by their short lifetimes. Understanding the factors affecting the stability of the heterogeneous photoelectrodes is required to formulate degradation mitigation strategies. We developed a multiscale and multiphysics model to investigate and quantify the photostability of photoelectrodes. The model considers the photophysical processes in an electrocatalyst-coated semiconductor immersed in electrolyte, and the kinetics of the competing water-splitting and photocorrosion reactions. When applied to 12 promising compound semiconductors for use as photoanodes (GaAs, GaP, InP, GaN, SiC, AlP, AlAs, CdTe, CdS, CdSe, ZnS, and ZnSe), the semiconductor-electrocatalyst interfacial charge transfer rate constant was found to be the most significant parameter for stabilizing the photoelectrodes. Its increase induced a sigmoid-like increase in photostability, and its optimization made it possible to stabilize nine semiconductors. The semiconductor surface back-bond energy also increased the photostability in a sigmoid-like response, and its optimization allowed to stabilize five semiconductors. The increase of irradiance induced a logarithmic drop in photostability, and limiting it to 100 W/m2 could stabilize three semiconductors. We further observed that the photostability in a device of centimeter-scale can vary by more than 50%, showing stable zones and photocorrosion hotspots. The photoelectrode's length as well as the electrocatalyst and electrolyte conductivities were found to be relevant parameters to impact this heterogeneity in the photostability. Thus, the photostability is not only defined by material properties but also by the specific combination of materials and by the device architecture. The model presented in this study can also be applied to photocathodes and other PEC designs, and can serve as a design tool for understanding, quantifying, and improving the stability.

8.
Chem Sci ; 12(29): 9866-9884, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34349960

RESUMEN

Photocatalytic approaches for the production of solar hydrogen or hydrocarbons are interesting as they provide a sustainable alternative to fossil fuels. Research has been focused on water splitting and on the synthesis of photocatalyst materials and compounds, and their characterization. The material-related challenges include the synthesis and design of photocatalysts that can absorb visible light at a high quantum efficiency, cocatalysts that are selective and can accelerate the reduction and/or oxidation reactions, and protection layers that facilitate migration of the minority carriers to the surface-active sites while reducing charge recombination and photo-corrosion. Less attention has been paid to the conceptual design of reactors, and how design and coupled transport can affect the material choice and requirements. This perspective discusses the various possible conceptual designs for particle suspension reactors and the related implications on the material requirements to achieve high energy conversion efficiencies. We establish a link between the thermodynamic limits, materials requirements, and conceptual reactor designs, quantify changes in material requirements when more realistic operation and losses are considered, and compare the theory-derived guidelines with the ongoing materials research activity.

9.
ACS Appl Mater Interfaces ; 12(5): 5739-5749, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31854964

RESUMEN

Stable semiconductor photoelectrodes for water splitting often exhibit long absorption lengths and poor properties for the efficient separation and transport of photogenerated charges. We propose a combination of resonant and geometric light trapping for thin-film, mesostructured α-Fe2O3 photoanodes to engineer enhanced light management and increase the photocurrent density. Simulations of the electromagnetic wave propagation on accurate mesostructures were used to optimize the semiconductor film thickness and the electrode morphology for maximum light absorption. Local photocurrent densities at the semiconductor-electrolyte interface were calculated via a probabilistic charge collection model. The findings of the numerical model were translated into photoanodes by a novel fabrication process based on template stripping. The developed experimental platform is versatile and enables to fabricate electrodes with various shapes and precise control on the mesostructure. We successfully demonstrated the fabrication of α-Fe2O3 photoanodes with arrays of wedge structures in the micrometer range on a flexible substrate that benefits from resonant and geometric light trapping.

11.
ChemSusChem ; 12(9): 1984-1994, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30644167

RESUMEN

Semiconductor photocorrosion is a major challenge for the stability of photoelectrochemical water-splitting devices. Usually, photocorrosion is studied on the basis of thermodynamic aspects, by comparing the redox potentials of water to the self-decomposition potentials of the semiconductor or analyzing the equilibrium phases at given electrolyte conditions. However, that approach does not allow for a prediction of the decomposition rate of the semiconductor or the branching ratio with the redox reaction. A kinetic model has been developed to describe detailed reaction mechanisms and investigate competition between water-splitting and photocorrosion reactions. It is observed that some thermodynamically unstable semiconductors should photocorrode in a few minutes, whereas others are expected to operate over a period of years as a result of their extremely low photocorrosion current. The photostability of the semiconductor is mainly found to depend on surface chemical properties, catalyst activity, charge carrier density, and electrolyte acidity.

12.
ChemSusChem ; 10(10): 2158-2166, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28134489

RESUMEN

Photocatalytic approaches using two sets of semiconductor particles and a pair of redox-shuttle mediators are considered as a safe and economic solution for solar water splitting. Here, accurate experimental characterization techniques for photocatalytic half reactions are reported, investigating the gas as well as the liquid products. The methods are exemplified utilizing photocatalytic titania particles in an iron-based aqueous electrolyte for effective oxygen evolution and mediator reduction reactions under illumination. Several product characterization methods, including an optical oxygen sensor, pressure sensor, gas chromatography, and UV/Vis spectroscopy are used and compared for accurate, high-resolution gas-products and mediator conversion measurements. Advantages of each technique are discussed. A high Faraday efficiency of 97.5±2 % is calculated and the reaction rate limits are investigated.


Asunto(s)
Procesos Fotoquímicos , Agua/química , Catálisis , Cromatografía de Gases , Oxígeno/análisis , Reproducibilidad de los Resultados , Espectrofotometría Ultravioleta
13.
Opt Express ; 24(22): A1360-A1373, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828522

RESUMEN

The performance of a new high-flux solar simulator consisting of 18 × 2.5 kWel radiation modules has been evaluated. Grayscale images of the radiative flux distribution at the focus are acquired for each module individually using a water-cooled Lambertian target plate and a CCD camera. Raw images are corrected for dark current, normalized by the exposure time and calibrated with local absolute heat flux measurements to produce radiative flux maps with 180 µm resolution. The resulting measured peak flux is 1.0-1.5 ± 0.2 MW m-2 per radiation module and 21.7 ± 2 MW m-2 for the sum of all 18 radiation modules. Integrating the flux distribution for all 18 radiation modules over a circular area of 5 cm diameter yields a mean radiative flux of 3.8 MW m-2 and an incident radiative power of 7.5 kW. A Monte Carlo ray-tracing simulation of the simulator is calibrated with the experimental results. The agreement between experimental and numerical results is characterized in terms of a 4.2% difference in peak flux and correlation coefficients of 0.9990 and 0.9995 for the local and mean radial flux profiles, respectively. The best-fit simulation parameters include the lamp efficiency of 39.4% and the mirror surface error of 0.85 mrad.

14.
ChemSusChem ; 9(20): 2878-2904, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27624337

RESUMEN

Semiconducting heterostructures are emerging as promising light absorbers and offer effective electron-hole separation to drive solar chemistry. This technology relies on semiconductor composites or photoelectrodes that work in the presence of a redox mediator and that create cascade junctions to promote surface catalytic reactions. Rational tuning of their structures and compositions is crucial to fully exploit their functionality. In this review, we describe the possibilities of applying the two-photon concept to the field of solar fuels. A wide range of strategies including the indirect combination of two semiconductors by a redox couple, direct coupling of two semiconductors, multicomponent structures with a conductive mediator, related photoelectrodes, as well as two-photon cells are discussed for light energy harvesting and charge transport. Examples of charge extraction models from the literature are summarized to understand the mechanism of interfacial carrier dynamics and to rationalize experimental observations. We focus on a working principle of the constituent components and linking the photosynthetic activity with the proposed models. This work gives a new perspective on artificial photosynthesis by taking simultaneous advantages of photon absorption and charge transfer, outlining an encouraging roadmap towards solar fuels.


Asunto(s)
Fotones , Semiconductores , Energía Solar , Oxidación-Reducción
15.
Angew Chem Int Ed Engl ; 55(42): 12974-12988, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27460923

RESUMEN

An integrated cell for the solar-driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar-to-hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling- and simulation-guided development and implementation of solar-driven water-splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures.

16.
Annu Rev Chem Biomol Eng ; 6: 13-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26083057

RESUMEN

Devices that directly capture and store solar energy have the potential to significantly increase the share of energy from intermittent renewable sources. Photo-electrochemical solar-hydrogen generators could become an important contributor, as these devices can convert solar energy into fuels that can be used throughout all sectors of energy. Rather than focusing on scientific achievement on the component level, this article reviews aspects of overall component integration in photo-electrochemical water-splitting devices that ultimately can lead to deployable devices. Throughout the article, three generalized categories of devices are considered with different levels of integration and spanning the range of complete integration by one-material photo-electrochemical approaches to complete decoupling by photovoltaics and electrolyzer devices. By using this generalized framework, we describe the physical aspects, device requirements, and practical implications involved with developing practical photo-electrochemical water-splitting devices. Aspects reviewed include macroscopic coupled multiphysics device models, physical device demonstrations, and economic and life cycle assessments, providing the grounds to draw conclusions on the overall technological outlook.


Asunto(s)
Electrólisis/instrumentación , Hidrógeno/química , Energía Solar , Agua/química , Diseño de Equipo , Procesos Fotoquímicos
17.
Chimia (Aarau) ; 69(12): 780-783, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26842330

RESUMEN

Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance.

18.
Phys Chem Chem Phys ; 15(19): 7050-4, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23579859

RESUMEN

Energy conversion devices require the parallel functionality of a variety of components for efficient operation. We present a versatile microfluidic test-bed for facile testing of integrated catalysis and mass transport components for energy conversion via water electrolysis. This system can be readily extended to solar-fuels generators and fuel-cell devices.

19.
Materials (Basel) ; 5(1): 192-209, 2012 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28817039

RESUMEN

High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...