Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vitam Horm ; 123: 313-383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37717990

RESUMEN

The nuclear vitamin D receptor (VDR) mediates the actions of its physiologic 1,25-dihydroxyvitamin D3 (1,25D) ligand produced in kidney and at extrarenal sites during times of physiologic and cellular stress. The ligand-receptor complex transcriptionally controls genes encoding factors that regulate calcium and phosphate sensing/transport, bone remodeling, immune function, and nervous system maintenance. With the aid of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), 1,25D/VDR primarily participates in an intricate network of feedback controls that govern extracellular calcium and phosphate concentrations, mainly influencing bone formation and mineralization, ectopic calcification, and indirectly supporting many fundamental roles of calcium. Beyond endocrine and intracrine effects, 1,25D/VDR signaling impacts multiple biochemical phenomena that potentially affect human health and disease, including autophagy, carcinogenesis, cell growth/differentiation, detoxification, metabolic homeostasis, and oxidative stress mitigation. Several health advantages conferred by 1,25D/VDR appear to be promulgated by induction of klotho, an anti-aging renal peptide hormone which functions as a co-receptor for FGF23 and, like 1,25D, regulates nrf2, foxo, mTOR and other cellular protective pathways. Among hundreds of genes for which expression is modulated by 1,25D/VDR either primarily or secondarily in a cell-specific manner, the resulting gene products (in addition to those expressed in the classic skeletal mineral regulatory tissues kidney, intestine, and bone), fall into multiple biochemical categories including apoptosis, cholesterol homeostasis, glycolysis, hypoxia, inflammation, p53 signaling, unfolded protein response and xenobiotic metabolism. Thus, 1,25D/VDR is a bone mineral control instrument that also signals the maintenance of multiple cellular processes in the face of environmental and genetic challenges.


Asunto(s)
Calcio , Receptores de Calcitriol , Humanos , Ligandos , Hormona Paratiroidea , Receptores de Calcitriol/genética
2.
JBMR Plus ; 5(1): e10432, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33553988

RESUMEN

The hormonal vitamin D metabolite, 1,25-dihydroxyvitamin D [1,25(OH)2D], produced in kidney, acts in numerous end organs via the nuclear vitamin D receptor (VDR) to trigger molecular events that orchestrate bone mineral homeostasis. VDR is a ligand-controlled transcription factor that obligatorily heterodimerizes with retinoid X receptor (RXR) to target vitamin D responsive elements (VDREs) in the vicinity of vitamin D-regulated genes. Circulating 1,25(OH)2D concentrations are governed by PTH, an inducer of renal D-hormone biosynthesis catalyzed by CYP27B1 that functions as the key player in a calcemic endocrine circuit, and by fibroblast growth factor-23 (FGF23), a repressor of the CYP27B1 renal enzyme, creating a hypophosphatemic endocrine loop. 1,25(OH)2D/VDR-RXR acts in kidney to induce Klotho (a phosphaturic coreceptor for FGF23) to correct hyperphosphatemia, NPT2a/c to correct hypophosphatemia, and TRPV5 and CaBP28k to enhance calcium reabsorption. 1,25(OH)2D-liganded VDR-RXR functions in osteoblasts/osteocytes by augmenting RANK-ligand expression to paracrine signal osteoclastic bone resorption, while simultaneously inducing FGF23, SPP1, BGLP, LRP5, ANK1, ENPP1, and TNAP, and conversely repressing RUNX2 and PHEX expression, effecting localized control of mineralization to sculpt the skeleton. Herein, we document the history of 1,25(OH)2D/VDR and summarize recent advances in characterizing their physiology, biochemistry, and mechanism of action by highlighting two examples of 1,25(OH)2D/VDR molecular function. The first is VDR-mediated primary induction of Klotho mRNA by 1,25(OH)2D in kidney via a mechanism initiated by the docking of liganded VDR-RXR on a VDRE at -35 kb in the mouse Klotho gene. In contrast, the secondary induction of FGF23 by 1,25(OH)2D in bone is proposed to involve rapid nongenomic action of 1,25(OH)2D/VDR to acutely activate PI3K, in turn signaling the induction of MZF1, a transcription factor that, in cooperation with c-ets1-P, binds to an enhancer element centered at -263 bp in the promoter-proximal region of the mouse fgf23 gene. Chronically, 1,25(OH)2D-induced osteopontin apparently potentiates MZF1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

3.
Biochem Biophys Rep ; 24: 100825, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33088927

RESUMEN

Mediated by the nuclear vitamin D receptor (VDR), the hormonally active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25D), is known to regulate expression of genes impacting calcium and phosphorus metabolism, the immune system, and behavior. Urolithin A, a nutrient metabolite derived from pomegranate, possibly acting through AMP kinase (AMPK) signaling, supports respiratory muscle health in rodents and longevity in C. elegans by inducing oxidative damage-reversing genes and mitophagy. We show herein that urolithin A enhances transcriptional actions of 1,25D driven by co-transfected vitamin D responsive elements (VDREs), and dissection of this genomic effect in cell culture reveals: 1) urolithin A concentration-dependency, 2) occurrence with isolated natural VDREs, 3) nuclear receptor selectivity for VDR over ER, LXR and RXR, and 4) significant 3- to 13-fold urolithin A-augmentation of 1,25D-dependent mRNA encoding the widely expressed 1,25D-detoxification enzyme, CYP24A1, a benchmark vitamin D target gene. Relevant to potential behavioral effects of vitamin D, urolithin A elicits enhancement of 1,25D-dependent mRNA encoding tryptophan hydroxylase-2 (TPH2), the serotonergic neuron-expressed initial enzyme in tryptophan metabolism to serotonin. Employing quantitative real time-PCR, we demonstrate that TPH2 mRNA is induced 1.9-fold by 10 nM 1,25D treatment in culture of differentiated rat serotonergic raphe (RN46A-B14) cells, an effect magnified 2.5-fold via supplementation with 10 µM urolithin A. This potentiation of 1,25D-induced TPH2 mRNA by urolithin A is followed by a 3.1- to 3.7-fold increase in serotonin concentration in culture medium from the pertinent neuronal cell line, RN46A-B14. These results are consistent with the concept that two natural nutrient metabolites, urolithin A from pomegranate and 1,25D from sunlight/vitamin D, likely acting via AMPK and VDR, respectively, cooperate mechanistically to effect VDRE-mediated regulation of gene expression in neuroendocrine cells. Finally, gedunin, a neuroprotective natural product from Indian neem tree that impacts the brain derived neurotropic factor pathway, similarly potentiates 1,25D/VDR-action.

4.
Genes Nutr ; 13: 19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30008960

RESUMEN

BACKGROUND: Diminished brain levels of two neurohormones, 5-hydroxytryptamine (5-HT; serotonin) and 1,25-dihydroxyvitamin D3 (1,25D; active vitamin D metabolite), are proposed to play a role in the atypical social behaviors associated with psychological conditions including autism spectrum disorders and depression. We reported previously that 1,25D induces expression of tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway to 5-HT, in cultured rat serotonergic neuronal cells. However, other enzymes and transporters in the pathway of tryptophan metabolism had yet to be examined with respect to the actions of vitamin D. Herein, we probed the response of neuronal cells to 1,25D by quantifying mRNA expression of serotonin synthesis isozymes, TPH1 and TPH2, as well as expression of the serotonin reuptake transporter (SERT), and the enzyme responsible for serotonin catabolism, monoamine oxidase-A (MAO-A). We also assessed the direct production of serotonin in cell culture in response to 1,25D. RESULTS: Employing quantitative real-time PCR, we demonstrate that TPH-1/-2 mRNAs are 28- to 33-fold induced by 10 nM 1,25D treatment of cultured rat serotonergic neuronal cells (RN46A-B14), and the enhancement of TPH2 mRNA by 1,25D is dependent on the degree of neuron-like character of the cells. In contrast, examination of SERT, the gene product of which is a target for the SSRI-class of antidepressants, and MAO-A, which encodes the predominant catabolic enzyme in the serotonin pathway, reveals that their mRNAs are 51-59% repressed by 10 nM 1,25D treatment of RN46A-B14 cells. Finally, serotonin concentrations are significantly enhanced (2.9-fold) by 10 nM 1,25D in this system. CONCLUSIONS: These results are consistent with the concept that vitamin D maintains extracellular fluid serotonin concentrations in the brain, thereby offering an explanation for how vitamin D could influence the trajectory and development of neuropsychiatric disorders. Given the profile of gene regulation in cultured RN46A-B14 serotonergic neurons, we conclude that 1,25D acts not only to induce serotonin synthesis, but also functions at an indirect, molecular-genomic stage to mimic SSRIs and MAO inhibitors, likely elevating serotonin in the CNS. These data suggest that optimal vitamin D status may contribute to improving behavioral pathophysiologies resulting from dysregulation of serotonergic neurotransmission.

5.
Vitam Horm ; 100: 165-230, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26827953

RESUMEN

1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging.


Asunto(s)
Glucuronidasa/metabolismo , Vitamina D/análogos & derivados , Animales , Factor-23 de Crecimiento de Fibroblastos , Regulación de la Expresión Génica/fisiología , Glucuronidasa/genética , Humanos , Proteínas Klotho , Transducción de Señal/fisiología , Vitamina D/química , Vitamina D/farmacología
6.
Calcif Tissue Int ; 92(2): 77-98, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22782502

RESUMEN

The hormonal metabolite of vitamin D, 1α,25-dihydroxyvitamin D(3) (1,25D), initiates biological responses via binding to the vitamin D receptor (VDR). When occupied by 1,25D, VDR interacts with the retinoid X receptor (RXR) to form a heterodimer that binds to vitamin D responsive elements in the region of genes directly controlled by 1,25D. By recruiting complexes of either coactivators or corepressors, ligand-activated VDR-RXR modulates the transcription of genes encoding proteins that promulgate the traditional functions of vitamin D, including signaling intestinal calcium and phosphate absorption to effect skeletal and calcium homeostasis. Thus, vitamin D action in a particular cell depends upon the metabolic production or delivery of sufficient concentrations of the 1,25D ligand, expression of adequate VDR and RXR coreceptor proteins, and cell-specific programming of transcriptional responses to regulate select genes that encode proteins that function in mediating the effects of vitamin D. For example, 1,25D induces RANKL, SPP1 (osteopontin), and BGP (osteocalcin) to govern bone mineral remodeling; TRPV6, CaBP(9k), and claudin 2 to promote intestinal calcium absorption; and TRPV5, klotho, and Npt2c to regulate renal calcium and phosphate reabsorption. VDR appears to function unliganded by 1,25D in keratinocytes to drive mammalian hair cycling via regulation of genes such as CASP14, S100A8, SOSTDC1, and others affecting Wnt signaling. Finally, alternative, low-affinity, non-vitamin D VDR ligands, e.g., lithocholic acid, docosahexaenoic acid, and curcumin, have been reported. Combined alternative VDR ligand(s) and 1,25D/VDR control of gene expression may delay chronic disorders of aging such as osteoporosis, type 2 diabetes, cardiovascular disease, and cancer.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Vitamina D/fisiología , Animales , Humanos , Receptores de Calcitriol/biosíntesis
7.
Rev Endocr Metab Disord ; 13(1): 57-69, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21932165

RESUMEN

1,25-dihydroxyvitamin D (1,25D), through association with the nuclear vitamin D receptor (VDR), exerts control over a novel endocrine axis consisting of the bone-derived hormone FGF23, and the kidney-expressed klotho, CYP27B1, and CYP24A1 genes, which together prevent hyperphosphatemia/ectopic calcification and govern the levels of 1,25D to maintain bone mineral integrity while promoting optimal function of other vital tissues. When occupied by 1,25D, VDR interacts with RXR to form a heterodimer that binds to VDREs in the region of genes directly controlled by 1,25D (e.g., FGF23, klotho, Npt2c, CYP27B1 and CYP24A1). By recruiting complexes of comodulators, activated VDR initiates a series of events that induces or represses the transcription of genes encoding proteins such as: the osteocyte-derived hormone, FGF23; the renal anti-senescence factor and protein co-receptor for FGF23, klotho; other mediators of phosphate transport including Npt2a/c; and vitamin D hormone metabolic enzymes, CYP27B1 and CYP24A1. The mechanism whereby osteocytes are triggered to release FGF23 is yet to be fully defined, but 1,25D, phosphate, and leptin appear to play major roles. The kidney responds to FGF23 to elicit CYP24A1-catalyzed detoxification of the 1,25D hormone while also repressing both Npt2a/c to mediate phosphate elimination and CYP27B1 to limit de novo 1,25D synthesis. Comprehension of these skeletal and renal actions of 1,25D should facilitate the development of novel mimetics to prevent ectopic calcification, chronic renal and vascular disease, and promote healthful aging.


Asunto(s)
Receptores de Calcitriol/metabolismo , Animales , Huesos/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Glucuronidasa/metabolismo , Humanos , Riñón/metabolismo , Proteínas Klotho , Modelos Biológicos , Receptores X Retinoide/metabolismo , Vitamina D/análogos & derivados , Vitamina D/metabolismo
8.
Biochem Biophys Res Commun ; 414(3): 557-62, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21982773

RESUMEN

Isoforms of the mammalian klotho protein serve as membrane co-receptors that regulate renal phosphate and calcium reabsorption. Phosphaturic effects of klotho are mediated in cooperation with fibroblast growth factor receptor-1 and its FGF23 ligand. The vitamin D receptor and its 1,25-dihydroxyvitamin D(3) ligand are also crucial for calcium and phosphate regulation at the kidney and participate in a feedback loop with FGF23 signaling. Herein we characterize vitamin D receptor-mediated regulation of klotho mRNA expression, including the identification of vitamin D responsive elements (VDREs) in the vicinity of both the mouse and human klotho genes. In keeping with other recent studies of vitamin D-regulated genes, multiple VDREs control klotho expression, with the most active elements located at some distance (-31 to -46 kb) from the klotho transcriptional start site. We therefore postulate that the mammalian klotho gene is up-regulated by liganded VDR via multiple remote VDREs. The phosphatemic actions of 1,25-dihydroxyvitamin D(3) are thus opposed via the combined phosphaturic effects of FGF23 and klotho, both of which are upregulated by the liganded vitamin D receptor.


Asunto(s)
Envejecimiento/metabolismo , Regulación de la Expresión Génica , Glucuronidasa/genética , Riñón/metabolismo , Receptores de Calcitriol/metabolismo , Elemento de Respuesta a la Vitamina D , Vitamina D/análogos & derivados , Envejecimiento/efectos de los fármacos , Animales , Línea Celular , Factor-23 de Crecimiento de Fibroblastos , Humanos , Proteínas Klotho , Ligandos , Ratones , ARN Mensajero/biosíntesis , Receptores de Calcitriol/agonistas , Vitamina D/metabolismo , Vitamina D/farmacología
9.
J Cell Biochem ; 110(3): 671-86, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20512927

RESUMEN

The mammalian hair cycle requires both the vitamin D receptor (VDR) and the hairless (Hr) corepressor, each of which is expressed in the hair follicle. Hr interacts directly with VDR to repress VDR-targeted transcription. Herein, we further map the VDR-interaction domain to regions in the C-terminal half of Hr that contain two LXXLL-like pairs of motifs known to mediate contact of Hr with the RAR-related orphan receptor alpha and with the thyroid hormone receptor, respectively. Site-directed mutagenesis indicates that all four hydrophobic motifs are required for VDR transrepression by Hr. Point mutation of rat Hr at conserved residues corresponding to natural mutants causing alopecia in mice (G985W and a C-terminal deletion DeltaAK) and in humans (P95S, C422Y, E611G, R640Q, C642G, N988S, D1030N, A1040T, V1074M, and V1154D), as well as alteration of residues in the C-terminal Jumonji C domain implicated in histone demethylation activity (C1025G/E1027G and H1143G) revealed that all Hr mutants retained VDR association, and that transrepressor activity was selectively abrogated in C642G, G985W, N988S, D1030N, V1074M, H1143G, and V1154D. Four of these latter Hr mutants (C642G, N988S, D1030N, and V1154D) were found to associate normally with histone deacetylase-3. Finally, we identified three regions of human VDR necessary for association with Hr, namely residues 109-111, 134-201, and 202-303. It is concluded that Hr and VDR interact via multiple protein-protein interfaces, with Hr recruiting histone deacetylases and possibly itself catalyzing histone demethylation to effect chromatin remodeling and repress the transcription of VDR target genes that control the hair cycle.


Asunto(s)
Alopecia/genética , Cabello/fisiología , Receptores de Calcitriol/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alopecia/metabolismo , Animales , Secuencia Conservada , Histona Desacetilasas/metabolismo , Humanos , Inmunoprecipitación , Mutagénesis Sitio-Dirigida , Mutación , Ratas
10.
J Steroid Biochem Mol Biol ; 121(1-2): 88-97, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20227497

RESUMEN

The nuclear vitamin D receptor (VDR) binds 1,25-dihydroxyvitamin D3 (1,25D), its high affinity renal endocrine ligand, to signal intestinal calcium and phosphate absorption plus bone remodeling, generating a mineralized skeleton free of rickets/osteomalacia with a reduced risk of osteoporotic fractures. 1,25D/VDR signaling regulates the expression of TRPV6, BGP, SPP1, LRP5, RANKL and OPG, while achieving feedback control of mineral ions to prevent age-related ectopic calcification by governing CYP24A1, PTH, FGF23, PHEX, and klotho transcription. Vitamin D also elicits numerous intracrine actions when circulating 25-hydroxyvitamin D3, the metabolite reflecting vitamin D status, is converted to 1,25D locally by extrarenal CYP27B1, and binds VDR to promote immunoregulation, antimicrobial defense, xenobiotic detoxification, anti-inflammatory/anticancer actions and cardiovascular benefits. VDR also affects Wnt signaling through direct interaction with beta-catenin, ligand-dependently blunting beta-catenin mediated transcription in colon cancer cells to attenuate growth, while potentiating beta-catenin signaling via VDR ligand-independent mechanisms in osteoblasts and keratinocytes to function osteogenically and as a pro-hair cycling receptor, respectively. Finally, VDR also drives the mammalian hair cycle in conjunction with the hairless corepressor by repressing SOSTDC1, S100A8/S100A9, and PTHrP. Hair provides a shield against UV-induced skin damage and cancer in terrestrial mammals, illuminating another function of VDR that facilitates healthful aging.


Asunto(s)
Envejecimiento , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Receptores de Calcitriol/metabolismo , Animales , Calcio/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Humanos , Queratinocitos/citología , Ratones , Modelos Biológicos , Osteopontina/metabolismo , Fosfatos/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
11.
J Nutr Biochem ; 21(12): 1153-61, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20153625

RESUMEN

The nuclear vitamin D receptor (VDR) mediates the actions of 1,25-dihydroxyvitamin D(3) (1,25D) to regulate gene transcription. Recently, the secondary bile acid, lithocholate (LCA), was recognized as a novel VDR ligand. Using reporter gene and mammalian two-hybrid systems, immunoblotting, competitive ligand displacement and quantitative real-time PCR, we identified curcumin (CM), a turmeric-derived bioactive polyphenol, as a likely additional novel ligand for VDR. CM (10(-5) M) activated transcription of a luciferase plasmid containing the distal vitamin D responsive element (VDRE) from the human CYP3A4 gene at levels comparable to 1,25D (10(-8) M) in transfected human colon cancer cells (Caco-2). While CM also activated transcription via a retinoid X receptor (RXR) responsive element, activation of the glucocorticoid receptor (GR) by CM was negligible. Competition binding assays with radiolabeled 1,25D confirmed that CM binds directly to VDR. In mammalian two-hybrid assays employing transfected Caco-2 cells, CM (10(-5) M) increased the ability of VDR to recruit its heterodimeric partner, RXR, and steroid receptor coactivator-1 (SRC-1). Real-time PCR studies revealed that CM-bound VDR can activate VDR target genes CYP3A4, CYP24, p21 and TRPV6 in Caco-2 cells. Numerous studies have shown chemoprotection by CM against intestinal cancers via a variety of mechanisms. Small intestine and colon are important VDR-expressing tissues where 1,25D has known anticancer properties that may, in part, be elicited by activation of CYP-mediated xenobiotic detoxification and/or up-regulation of the tumor suppressor p21. Our results suggest the novel hypothesis that nutritionally-derived CM facilitates chemoprevention via direct binding to, and activation of, VDR.


Asunto(s)
Anticarcinógenos/farmacología , Curcumina/farmacología , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Animales , Células CACO-2 , Citocromo P-450 CYP3A/metabolismo , Humanos , Ligandos , Ácido Litocólico/metabolismo , Coactivador 1 de Receptor Nuclear/metabolismo , Ratas , Receptores de Calcitriol/genética , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Esteroide Hidroxilasas/metabolismo , Activación Transcripcional , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba , Vitamina D/genética , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilasa
12.
Nutr Rev ; 66(10 Suppl 2): S98-112, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18844852

RESUMEN

The human vitamin D receptor (VDR) is a key nuclear receptor that binds nutritionally derived ligands and exerts bioeffects that contribute to bone mineral homeostasis, detoxification of exogenous and endogenous compounds, cancer prevention, and mammalian hair cycling. Liganded VDR modulates gene expression via heterodimerization with the retinoid X receptor and recruitment of coactivators or corepressors. VDR interacts with the corepressor hairless (Hr) to control hair cycling, an action independent of the endocrine VDR ligand, 1,25-dihydroxyvitamin D(3). We report novel dietary ligands for VDR including curcumin, gamma-tocotrienol, and essential fatty acid derivatives that likely play a role in the bioactions of VDR.


Asunto(s)
Calcificación Fisiológica/fisiología , Folículo Piloso/metabolismo , Homeostasis/fisiología , Neoplasias/prevención & control , Receptores de Calcitriol/fisiología , Conservadores de la Densidad Ósea/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Calcio/metabolismo , Regulación de la Expresión Génica , Homeostasis/efectos de los fármacos , Humanos , Fósforo/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores X Retinoide/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vitamina D/metabolismo
13.
J Steroid Biochem Mol Biol ; 103(3-5): 381-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17293108

RESUMEN

1,25-Dihydroxyvitamin D(3) (1,25D) is known primarily as a regulator of calcium, but 1,25D also promotes phosphate absorption from intestine, reabsorption from kidney, and bone mineral resorption. FGF23 is a newly discovered phosphaturic hormone that, like PTH, lowers serum phosphate by inhibiting renal reabsorption via Npt2a. We show that 1,25D strongly upregulates FGF23 in bone. FGF23 then represses 1alpha-OHase activity in kidney, thus preventing spiraling induction of FGF23 by 1,25D. We also report that LRP5, Runx2, TRPV6, and Npt2c, all anabolic toward bone, and RANKL, which is catabolic, are transcriptionally regulated by 1,25D. This coordinated regulation together with that of FGF23 and PTH allows 1,25D to play a central role in maintaining calcium and phosphate homeostasis and bone metabolism. In the cases of LRP5, Runx2, TRPV6, and Npt2c we show that transcriptional regulation results at least in part from direct binding of VDR near the relevant gene promoter. Finally, because 1,25D induces FGF23, and FGF23 in turn represses 1,25D synthesis, a reciprocal relationship is established with FGF23 indirectly curtailing 1,25D-mediated intestinal absorption and counterbalancing renal reabsorption of phosphate. This newly revealed FGF23/1,25D/Pi axis is comparable in significance to phosphate and bone metabolism as the PTH/1,25D/Ca axis is to calcium homeostasis.


Asunto(s)
Huesos/metabolismo , Calcio/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Minerales/metabolismo , Fósforo/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Animales , Secuencia de Bases , Huesos/citología , Diferenciación Celular , Línea Celular , Inmunoprecipitación de Cromatina , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Homeostasis , Humanos , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , Ratas , Transcripción Genética/genética , Vitamina D/metabolismo
14.
J Bone Miner Res ; 22 Suppl 2: V2-10, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18290715

RESUMEN

The vitamin D hormone, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], binds with high affinity to the nuclear vitamin D receptor (VDR), which recruits its retinoid X receptor (RXR) heterodimeric partner to recognize vitamin D responsive elements (VDREs) in target genes. 1,25(OH)(2)D(3) is known primarily as a regulator of calcium, but it also controls phosphate (re)absorption at the intestine and kidney. Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced in osteoblasts that, like PTH, lowers serum phosphate by inhibiting renal reabsorption through Npt2a/Npt2c. Real-time PCR and reporter gene transfection assays were used to probe VDR-mediated transcriptional control by 1,25(OH)(2)D(3). Reporter gene and mammalian two-hybrid transfections, plus competitive receptor binding assays, were used to discover novel VDR ligands. 1,25(OH)(2)D(3) induces FGF23 78-fold in osteoblasts, and because FGF23 in turn represses 1,25(OH)(2)D(3) synthesis, a reciprocal relationship is established, with FGF23 indirectly curtailing 1,25(OH)(2)D(3)-mediated intestinal absorption and counterbalancing renal reabsorption of phosphate, thereby reversing hyperphosphatemia and preventing ectopic calcification. Therefore, a 1,25(OH)(2)D(3)-FGF23 axis regulating phosphate is comparable in importance to the 1,25(OH)(2)D(3)-PTH axis that regulates calcium. 1,25(OH)(2)D(3) also elicits regulation of LRP5, Runx2, PHEX, TRPV6, and Npt2c, all anabolic toward bone, and RANKL, which is catabolic. Regulation of mouse RANKL by 1,25(OH)(2)D(3) supports a cloverleaf model, whereby VDR-RXR heterodimers bound to multiple VDREs are juxtapositioned through chromatin looping to form a supercomplex, potentially allowing simultaneous interactions with multiple co-modulators and chromatin remodeling enzymes. VDR also selectively binds certain omega3/omega6 polyunsaturated fatty acids (PUFAs) with low affinity, leading to transcriptionally active VDR-RXR complexes. Moreover, the turmeric-derived polyphenol, curcumin, activates transcription of a VDRE reporter construct in human colon cancer cells. Activation of VDR by PUFAs and curcumin may elicit unique, 1,25(OH)(2)D(3)-independent signaling pathways to orchestrate the bioeffects of these lipids in intestine, bone, skin/hair follicle, and other VDR-containing tissues.


Asunto(s)
Calcificación Fisiológica , Alimentos , Receptores de Calcitriol/metabolismo , Animales , Células COS , Calcificación Fisiológica/efectos de los fármacos , Calcio/metabolismo , Línea Celular , Chlorocebus aethiops , Factor-23 de Crecimiento de Fibroblastos , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Ligandos , Modelos Genéticos , Fosfatos/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacología
15.
J Cell Biochem ; 94(5): 917-43, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15578590

RESUMEN

The vitamin D receptor (VDR) binds to and mediates the effects of the 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) hormone to alter gene transcription. A newly recognized VDR ligand is the carcinogenic bile acid, lithocholic acid (LCA). We demonstrate that, in HT-29 colon cancer cells, both LCA and 1,25(OH)(2)D(3) induce expression of cytochrome P450 3A4 (CYP3A4), an enzyme involved in cellular detoxification. We also show that LCA-VDR stimulates transcription of gene reporter constructs containing DR3 and ER6 vitamin D responsive elements (VDREs) from the human CYP3A4 gene. Utilizing gel mobility shift, pulldown, and mammalian two-hybrid assays, we observe that: (i) 1,25(OH)(2)D(3) enhances retinoid X receptor (RXR) heterodimerization with VDR more effectively than LCA, (ii) the 1,25(OH)(2)D(3)-liganded VDR-RXR heterodimer recruits full-length SRC-1 coactivator, whereas this interaction is minimal with LCA unless LXXLL-containing fragments of SRC-1 are employed, and (iii) both 1,25(OH)(2)D(3) and LCA enhance the binding of VDR to DRIP205/mediator, but unlike 1,25(OH)(2)D(3)-VDR, LCA-VDR does not interact detectably with NCoA-62 or TRIP1/SUG1, suggesting a different pattern of LCA-VDR comodulator association. Finally, residues in the human VDR (hVDR) ligand binding domain (LBD) were altered to create mutants unresponsive to 1,25(OH)(2)D(3)- and/or LCA-stimulated transactivation, identifying S237 and S225/S278 as critical for 1,25(OH)(2)D(3) and LCA action, respectively. Therefore, these two VDR ligands contact distinct residues in the binding pocket, perhaps generating unique receptor conformations that determine the degree of RXR and comodulator binding. We propose that VDR is a bifunctional regulator, with the 1,25(OH)(2)D(3)-liganded conformation facilitating high affinity endocrine actions, and the LCA-liganded configuration mediating local, lower affinity cellular detoxification by upregulation of CYP3A4 in the colon.


Asunto(s)
Calcitriol/farmacología , Sistema Enzimático del Citocromo P-450/genética , Ácido Litocólico/farmacología , Receptores de Calcitriol/metabolismo , Activación Transcripcional/efectos de los fármacos , Secuencia de Bases , Western Blotting , Línea Celular , Línea Celular Tumoral , Neoplasias del Colon/enzimología , Neoplasias del Colon/patología , Citocromo P-450 CYP3A , Cartilla de ADN , Humanos , Ligandos , Ácido Litocólico/metabolismo , Regiones Promotoras Genéticas
16.
Biochem Biophys Res Commun ; 324(2): 801-9, 2004 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-15474498

RESUMEN

The human vitamin D receptor (hVDR), which is a substrate for several protein kinases, mediates the actions of its 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) ligand to regulate gene expression. To determine the site, and functional impact, of cAMP-dependent protein kinase (PKA)-catalyzed phosphorylation of hVDR, we generated a series of C-terminally truncated and point mutant receptors. Incubation of mutant hVDRs with PKA and [gamma-32P]ATP, in vitro, or overexpressing them in COS-7 kidney cells labeled with [32P]orthophosphate, revealed that serine-182 is the predominant residue in hVDR phosphorylated by PKA. An aspartate substituted mutant (S182D), incorporating a negative charge to mimic phosphorylation, displayed only 50% of the transactivation capacity in response to 1,25(OH)2D3 of either wild-type or an S182A-altered hVDR. When the catalytic subunit of PKA was overexpressed, a similar reduction in wild-type but not S182D hVDR transactivity was observed. In a mammalian two-hybrid system, S182D bound less avidly than wild-type or S182A hVDR to the retinoid X receptor (RXR) heterodimeric partner that co-mediates vitamin D responsive element recognition and transactivation. These data suggest that hVDR serine-182 is a primary site for PKA phosphorylation, an event that leads to an attenuation of both RXR heterodimerization and resultant transactivation of 1,25(OH)2D3 target genes.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/química , Receptores de Calcitriol/química , Serina/química , Animales , Sitios de Unión , Células COS , Calcio/metabolismo , Catálisis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN Complementario/metabolismo , Electroforesis en Gel de Poliacrilamida , Humanos , Immunoblotting , Inmunoprecipitación , Ligandos , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación , Plásmidos/metabolismo , Receptores X Retinoide/metabolismo , Activación Transcripcional , Transfección , Técnicas del Sistema de Dos Híbridos
17.
Endocrinology ; 144(11): 5065-80, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12960019

RESUMEN

Nuclear hormone receptor-responsive element binding specificity has been reported to reside predominantly in the proximal box (P-box), three amino acids located in a DNA-recognition alpha-helix situated on the C-terminal side of the first zinc finger. To further define the residues in the vitamin D receptor (VDR) DNA binding domain (DBD) that mediate its interaction as a retinoid X receptor (RXR) heterodimer with the rat osteocalcin vitamin D-responsive element (VDRE), chimeric receptors were created in which the core DBD of VDR was replaced with that of the homodimerizing glucocorticoid receptor (GR). Systematic alteration of GR DBD amino acids in these chimeras to VDR DBD residues identified arg-49 and lys-53, just C-terminal of the P-box within the base recognition alpha-helix of human VDR (hVDR), as the only two amino acids among 36 differences required to convert the GR core zinc finger domain to that of the VDR. Gel mobility shift and 1,25-dihydroxyvitamin D3-stimulated transcription assays verified that an hVDR-GR DBD chimera is functional on the rat osteocalcin VDRE with only the conservative change of lys-49 to arg, and of the negatively charged glu-53 to a basic amino acid (lys or arg). Thus, for RXR heterodimerizing receptors like VDR, the P-box requires redefinition and expansion to include a DNA specificity element corresponding to arg-49 and lys-53 of hVDR. Examination of DNA specificity element amino acids in other nuclear receptors in terms of conservation and base contact in cocrystal structures supports the conclusion that these residues are crucial for selective DNA recognition.


Asunto(s)
ADN/metabolismo , Osteocalcina/genética , Estructura Terciaria de Proteína/fisiología , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Elemento de Respuesta a la Vitamina D/fisiología , Secuencia de Aminoácidos/genética , Sustitución de Aminoácidos , Animales , Células COS , Cristalografía , Dimerización , Humanos , Ratones , Ratas , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Glucocorticoides/química , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/metabolismo , Receptores de Hormona Tiroidea/genética , Proteínas Recombinantes de Fusión/metabolismo , Receptores X Retinoide , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Activación Transcripcional , Elemento de Respuesta a la Vitamina D/genética
18.
J Biol Chem ; 278(40): 38665-74, 2003 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-12847098

RESUMEN

Both the vitamin D receptor (VDR) and hairless (hr) genes play a role in the mammalian hair cycle, as inactivating mutations in either result in total alopecia. VDR is a nuclear receptor that functions as a ligand-activated transcription factor, whereas the hairless gene product (Hr) acts as a corepressor of both the thyroid hormone receptor (TR) and the orphan nuclear receptor, RORalpha. In the present study, we show that VDR-mediated transactivation is strikingly inhibited by coexpression of rat Hr. The repressive effect of Hr is observed on both synthetic and naturally occurring VDR-responsive promoters and also when VDR-mediated transactivation is augmented by overexpression of its heterodimeric partner, retinoid X receptor. Utilizing in vitro pull down methods, we find that Hr binds directly to VDR but insignificantly to nuclear receptors that are not functionally repressed by Hr. Coimmunoprecipitation data demonstrate that Hr and VDR associate in a cellular milieu, suggesting in vivo interaction. The Hr contact site in human VDR is localized to the central portion of the ligand binding domain, a known corepressor docking region in other nuclear receptors separate from the activation function-2 domain. Coimmunoprecipitation and functional studies of Hr deletants reveal that VDR contacts a C-terminal region of Hr that includes motifs required for TR and RORalpha binding. Finally, in situ hybridization analysis of hr and VDR mRNAs in mouse skin demonstrates colocalization in cells of the hair follicle, consistent with a hypothesized intracellular interaction between these proteins to repress VDR target gene expression, in vivo.


Asunto(s)
Proteínas/química , Receptores de Calcitriol/química , Animales , Células COS , Núcleo Celular/metabolismo , Clonación Molecular , Glutatión Transferasa/metabolismo , Humanos , Hibridación in Situ , Ligandos , Ratones , Mutación , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Fenotipo , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/metabolismo , ARN Complementario/metabolismo , Ratas , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transactivadores/metabolismo , Factores de Transcripción , Transcripción Genética , Activación Transcripcional , Transfección
19.
Biochem Biophys Res Commun ; 299(5): 730-8, 2002 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-12470639

RESUMEN

The nuclear vitamin D receptor (VDR) mediates the effects of 1,25-dihydroxyvitamin D(3) (1,25D(3)) to alter intestinal gene transcription and promote calcium absorption. Because 1,25D(3) also exerts anti-cancer effects, we examined the efficacy of 1,25D(3) to induce cytochrome P450 (CYP) enzymes. Exposure of human colorectal adenocarcinoma cells (HT-29) to 10(-8)M 1,25D(3) resulted in >/=3-fold induction of CYP3A4 mRNA and protein as assessed by RT-PCR and Western blotting, respectively. Six vitamin D responsive element (VDRE)-like sequences in the promoter region of the CYP3A4 gene were then individually tested for their ability to enhance transcription. A canonical DR3-type element in the distal region of the promoter (-7719-GGGTCAgcaAGTTCA-7733), and a proximal, non-classical everted repeat with a spacer of 6 bp (ER6; -169-TGAACTcaaaggAGGTCA-152) were identified as functional VDREs in this CYP gene. These data suggest that 1,25D(3)-dependent, VDR-mediated induction of CYP3A4 may constitute a chemoprotective mechanism for detoxification of enteric xenobiotics and carcinogens.


Asunto(s)
Neoplasias del Colon/genética , Sistema Enzimático del Citocromo P-450/genética , Neoplasias Intestinales/genética , Intestino Delgado , Elemento de Respuesta a la Vitamina D , Calcitriol/farmacología , Neoplasias del Colon/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/biosíntesis , Ensayo de Cambio de Movilidad Electroforética , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Neoplasias Intestinales/metabolismo , Intestino Delgado/metabolismo , Ligandos , ARN Mensajero/biosíntesis , Activación Transcripcional , Células Tumorales Cultivadas
20.
J Cell Biochem ; 85(2): 435-57, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11948698

RESUMEN

Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus-expressed hVDR were purified to 97% homogeneity, and then tested for binding to the rat osteocalcin vitamin D responsive element (VDRE) via electrophoretic mobility shift and half-site competition assays in the presence or absence of a CV-1 nuclear extract containing retinoid X receptor (RXR). Methylation interference analysis revealed that both the hVDR homodimer and the VDR-RXR heterodimer display similar patterns of VDRE G-base protection. However, in competition studies, the relative dissociation of the homodimeric hVDR complex from the VDRE was extremely rapid (t1/2 < 30 s) compared to the dissociation of the heteromeric complex (t1/2 > 5 min), thus illustrating the relative instability and low affinity of homodimeric VDR binding to DNA. These results indicate that VDR-RXR heterodimers are the preferred VDRE binding species. Further, two dimensional gel electrophoresis of hVDR demonstrated several isoelectric forms of the receptor, suggesting that it is subject to multiple phosphorylation events. In vitro kinase assays confirmed that purified hVDR is an efficient substrate for protein kinases A and Cbeta, as well as casein kinase II. In vivo studies of the expressed receptor in intact cells, namely baculovirus vector infected Sf9 insect cells and transfected mammalian COS-7 cells, demonstrated that hVDR was phosphorylated in a hormone-enhanced fashion. Functional consequences of hVDR phosphorylation were suggested by the observations that: (i) potato acid phosphatase (PAP)-treated hVDR no longer interacted with the VDRE as either a homodimer or a heteromeric complex with RXR, and (ii) treatment of transfected COS-7 cells with a phosphatase inhibitor (okadaic acid) along with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) resulted in a synergistic enhancement of both hVDR phosphorylation and transactivation of a VDRE-linked reporter gene, compared to the effect of treatment with either agent alone. These studies point to a significant role for phosphorylation of VDR in regulating high-affinity VDR-RXR interactions with VDREs, and also in modulating 1,25(OH)2D3-elicited transcriptional activation in target cells.


Asunto(s)
Baculoviridae/genética , ADN/metabolismo , Genes Reguladores/genética , Regiones Promotoras Genéticas/genética , Receptores de Calcitriol/genética , Elementos de Respuesta/genética , Tretinoina/fisiología , Fosfatasa Ácida/metabolismo , Animales , Sitios de Unión , Western Blotting , Células COS , Cartilla de ADN/química , Dimerización , Ensayo de Cambio de Movilidad Electroforética , Vectores Genéticos , Humanos , Ácido Ocadaico/farmacología , Osteocalcina/genética , Osteocalcina/metabolismo , Fosforilación , Ratas , Receptores de Calcitriol/aislamiento & purificación , Receptores de Calcitriol/metabolismo , Receptores de Ácido Retinoico/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptores X Retinoide , Factores de Transcripción/genética , Vitamina D/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...