Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Int Rev Neurobiol ; 176: 455-479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38802180

RESUMEN

Amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases are characterised by dysfunction of a host of RNA-binding proteins (RBPs) and a severely disrupted RNA metabolism. Recently, RBP-harbouring phase-separated complexes, ribonucleoprotein (RNP) granules, have come into the limelight as "crucibles" of neuronal pathology in ALS. RNP granules are indispensable for the multitude of regulatory processes underlying cellular RNA metabolism and serve as critical organisers of cellular biochemistry. Neurons, highly specialised cells, heavily rely on RNP granules for efficient trafficking, signalling and stress responses. Multiple RNP granule components, primarily RBPs such as TDP-43 and FUS, are affected by ALS mutations. However, even in the absence of mutations, RBP proteinopathies represent pathophysiological hallmarks of ALS. Given the high local concentrations of RBPs and RNAs, their weakened or enhanced interactions within RNP granules disrupt their homeostasis. Thus, the physiological process of phase separation and RNP granule formation, vital for maintaining the high-functioning state of neuronal cells, becomes their Achilles heel. Here, we will review the recent literature on the causes and consequences of abnormal RNP granule functioning in ALS and related disorders. In particular, we will summarise the evidence for the network-level dysfunction of RNP granules in these conditions and discuss considerations for therapeutic interventions to target RBPs, RNP granules and their network as a whole.


Asunto(s)
Esclerosis Amiotrófica Lateral , Gránulos Citoplasmáticos , Ribonucleoproteínas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Ribonucleoproteínas/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Orgánulos/metabolismo
2.
Nat Commun ; 14(1): 5496, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679383

RESUMEN

PGC-1α plays a central role in maintaining mitochondrial and energy metabolism homeostasis, linking external stimuli to transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and an RNA recognition motif, however the RNA-processing function(s) were poorly investigated over the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export receptor NXF1. Inducible depletion of PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that its RNA/NXF1-binding activity is required for the nuclear export of some canonical mitochondrial-related mRNAs and mitochondrial homeostasis. Genome-wide investigations reveal that the nuclear export function is not strictly linked to promoter-binding, identifying in turn novel regulatory targets of PGC-1α in non-homologous end-joining and nucleocytoplasmic transport. These findings provide new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, aging and neurodegeneration.


Asunto(s)
Transporte de ARN , ARN , Humanos , Transporte Activo de Núcleo Celular , Expresión Génica , Homeostasis
3.
Front Aging Neurosci ; 15: 1151848, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251807

RESUMEN

A p.Y374X truncation in TARDBP was recently shown to reduce expression of TDP43 in fibroblasts isolated from ALS cases. In this follow up study focused on assessing the downstream phenotypic consequences of loss of TDP43 in the context of the truncation, we have shown a striking effect on the fibroblast metabolic profile. Phenotypic metabolic screening uncovered a distinct metabolic profile in TDP43-Y374X fibroblasts compared to controls, which was driven by alterations in key metabolic checkpoint intermediates including pyruvate, alpha-ketoglutarate and succinate. These metabolic alterations were confirmed using transcriptomics and bioenergetic flux analysis. These data suggest that TDP43 truncation directly compromises glycolytic and mitochondrial function, identifying potential therapeutic targets for mitigating the effects of TDP43-Y374X truncation.

4.
Sci Transl Med ; 15(685): eabo3823, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857431

RESUMEN

Hexanucleotide repeat expansions in C9ORF72 are the most common genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Studies have shown that the hexanucleotide expansions cause the noncanonical translation of C9ORF72 transcripts into neurotoxic dipeptide repeat proteins (DPRs) that contribute to neurodegeneration. We show that a cell-penetrant peptide blocked the nuclear export of C9ORF72-repeat transcripts in HEK293T cells by competing with the interaction between SR-rich splicing factor 1 (SRSF1) and nuclear export factor 1 (NXF1). The cell-penetrant peptide also blocked the translation of toxic DPRs in neurons differentiated from induced neural progenitor cells (iNPCs), which were derived from individuals carrying C9ORF72-linked ALS mutations. This peptide also increased survival of iNPC-differentiated C9ORF72-ALS motor neurons cocultured with astrocytes. Oral administration of the cell-penetrant peptide reduced DPR translation and rescued locomotor deficits in a Drosophila model of mutant C9ORF72-mediated ALS/FTD. Intrathecal injection of this peptide into the brains of ALS/FTD mice carrying a C9ORF72 mutation resulted in reduced expression of DPRs in mouse brains. These findings demonstrate that disrupting the production of DPRs in cellular and animal models of ALS/FTD might be a strategy to ameliorate neurodegeneration in these diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Animales , Ratones , Dipéptidos , Proteína C9orf72 , Transporte Activo de Núcleo Celular , Células HEK293 , Péptidos , Neuronas Motoras , ARN , Factores de Empalme Serina-Arginina
5.
Life Sci Alliance ; 6(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36241425

RESUMEN

New therapeutic targets are a valuable resource for treatment of SARS-CoV-2 viral infection. Genome-wide association studies have identified risk loci associated with COVID-19, but many loci are associated with comorbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of the 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins. Aggregating COVID-19 genome-wide association studies statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19. EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. EXOSC2 is a component of the RNA exosome, and here, LC-MS/MS analysis of protein pulldowns demonstrated interaction between the SARS-CoV-2 RNA polymerase and most of the human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression and impeded SARS-CoV-2 replication without impacting cellular viability. Targeted depletion of EXOSC2 may be a safe and effective strategy to protect against clinical COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Cromatografía Liquida , Codón sin Sentido , ARN Polimerasas Dirigidas por ADN/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Estudio de Asociación del Genoma Completo , Humanos , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , SARS-CoV-2/genética , Espectrometría de Masas en Tándem , Proteinas del Complejo de Replicasa Viral , Replicación Viral/genética
6.
Brain Pathol ; 33(1): e13104, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35871544

RESUMEN

We describe an autosomal dominant, multi-generational, amyotrophic lateral sclerosis (ALS) pedigree in which disease co-segregates with a heterozygous p.Y374X nonsense mutation within TDP-43. Mislocalization of TDP-43 and formation of insoluble TDP-43-positive neuronal cytoplasmic inclusions is the hallmark pathology in >95% of ALS patients. Neuropathological examination of the single case for which CNS tissue was available indicated typical TDP-43 pathology within lower motor neurons, but classical TDP-43-positive inclusions were absent from motor cortex. The mutated allele is transcribed and translated in patient fibroblasts and motor cortex tissue, but overall TDP-43 protein expression is reduced compared to wild-type controls. Despite absence of TDP-43-positive inclusions we confirmed deficient TDP-43 splicing function within motor cortex tissue. Furthermore, urea fractionation and mass spectrometry of motor cortex tissue carrying the mutation revealed atypical TDP-43 protein species but not typical C-terminal fragments. We conclude that the p.Y374X mutation underpins a monogenic, fully penetrant form of ALS. Reduced expression of TDP-43 combined with atypical TDP-43 protein species and absent C-terminal fragments extends the molecular phenotypes associated with TDP-43 mutations and with ALS more broadly. Future work will need to include the findings from this pedigree in dissecting the mechanisms of TDP-43-mediated toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Linaje
7.
Front Genet ; 13: 886563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646086

RESUMEN

Short repeated sequences of 3-6 nucleotides are causing a growing number of over 50 microsatellite expansion disorders, which mainly present with neurodegenerative features. Although considered rare diseases in relation to the relatively low number of cases, these primarily adult-onset conditions, often debilitating and fatal in absence of a cure, collectively pose a large burden on healthcare systems in an ageing world population. The pathological mechanisms driving disease onset are complex implicating several non-exclusive mechanisms of neuronal injury linked to RNA and protein toxic gain- and loss- of functions. Adding to the complexity of pathogenesis, microsatellite repeat expansions are polymorphic and found in coding as well as in non-coding regions of genes. They form secondary and tertiary structures involving G-quadruplexes and atypical helices in repeated GC-rich sequences. Unwinding of these structures by RNA helicases plays multiple roles in the expression of genes including repeat-associated non-AUG (RAN) translation of polymeric-repeat proteins with aggregating and cytotoxic properties. Here, we will briefly review the pathogenic mechanisms mediated by microsatellite repeat expansions prior to focus on the RNA helicases eIF4A, DDX3X and DHX36 which act as modifiers of RAN translation in C9ORF72-linked amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72-ALS/FTD) and Fragile X-associated tremor/ataxia syndrome (FXTAS). We will further review the RNA helicases DDX5/17, DHX9, Dicer and UPF1 which play additional roles in the dysregulation of RNA metabolism in repeat expansion disorders. In addition, we will contrast these with the roles of other RNA helicases such as DDX19/20, senataxin and others which have been associated with neurodegeneration independently of microsatellite repeat expansions. Finally, we will discuss the challenges and potential opportunities that are associated with the targeting of RNA helicases for the development of future therapeutic approaches.

8.
Life Sci Alliance ; 5(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35568435

RESUMEN

Dipeptide repeat (DPR) proteins are aggregation-prone polypeptides encoded by the pathogenic GGGGCC repeat expansion in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. In this study, we focus on the role of poly-GA DPRs in disease spread. We demonstrate that recombinant poly-GA oligomers can directly convert into solid-like aggregates and form characteristic ß-sheet fibrils in vitro. To dissect the process of cell-to-cell DPR transmission, we closely follow the fate of poly-GA DPRs in either their oligomeric or fibrillized form after administration in the cell culture medium. We observe that poly-GA DPRs are taken up via dynamin-dependent and -independent endocytosis, eventually converging at the lysosomal compartment and leading to axonal swellings in neurons. We then use a co-culture system to demonstrate astrocyte-to-motor neuron DPR propagation, showing that astrocytes may internalise and release aberrant peptides in disease pathogenesis. Overall, our results shed light on the mechanisms of poly-GA cellular uptake and propagation, suggesting lysosomal impairment as a possible feature underlying the cellular pathogenicity of these DPR species.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Dipéptidos , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Humanos , Neuronas Motoras/metabolismo
9.
Life Sci Alliance ; 5(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35440492

RESUMEN

Spinal muscular atrophy, the leading genetic cause of infant mortality, is a motor neuron disease caused by low levels of survival motor neuron (SMN) protein. SMN is a multifunctional protein that is implicated in numerous cytoplasmic and nuclear processes. Recently, increasing attention is being paid to the role of SMN in the maintenance of DNA integrity. DNA damage and genome instability have been linked to a range of neurodegenerative diseases. The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. Instability in rDNA has been associated with cancer, premature ageing syndromes, and a number of neurodegenerative disorders. Here, we report that SMN-deficient cells exhibit increased rDNA damage leading to impaired ribosomal RNA synthesis and translation. We also unravel an interaction between SMN and RNA polymerase I. Moreover, we uncover an spinal muscular atrophy motor neuron-specific deficiency of DDX21 protein, which is required for resolving R-loops in the nucleolus. Taken together, our findings suggest a new role of SMN in rDNA integrity.


Asunto(s)
Neuronas Motoras , Atrofia Muscular Espinal , ARN Helicasas DEAD-box/metabolismo , Daño del ADN/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Humanos , Lactante , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
10.
Front Cell Neurosci ; 16: 1061559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619668

RESUMEN

Disruption to protein homeostasis caused by lysosomal dysfunction and associated impairment of autophagy is a prominent pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). The most common genetic cause of ALS/FTD is a G4C2 hexanucleotide repeat expansion in C9orf72 (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of G4C2 repeat transcripts gives rise to dipeptide repeat (DPR) proteins that have been shown to be toxic and may contribute to disease etiology. Genetic variants in TMEM106B have been associated with frontotemporal lobar degeneration with TDP-43 pathology and disease progression in C9ALS/FTD. TMEM106B encodes a lysosomal transmembrane protein of unknown function that is involved in various aspects of lysosomal biology. How TMEM106B variants affect C9ALS/FTD is not well understood but has been linked to changes in TMEM106B protein levels. Here, we investigated TMEM106B function in the context of C9ALS/FTD DPR pathology. We report that knockdown of TMEM106B expression exacerbates the accumulation of C9ALS/FTD-associated cytotoxic DPR proteins in cell models expressing RAN-translated or AUG-driven DPRs as well as in C9ALS/FTD-derived iAstrocytes with an endogenous G4C2 expansion by impairing autophagy. Loss of TMEM106B caused a block late in autophagy by disrupting autophagosome to autolysosome maturation which coincided with impaired lysosomal acidification, reduced cathepsin activity, and juxtanuclear clustering of lysosomes. Lysosomal clustering required Rab7A and coincided with reduced Arl8b-mediated anterograde transport of lysosomes to the cell periphery. Increasing Arl8b activity in TMEM106B-deficient cells not only restored the distribution of lysosomes, but also fully rescued autophagy and DPR protein accumulation. Thus, we identified a novel function of TMEM106B in autophagosome maturation via Arl8b. Our findings indicate that TMEM106B variants may modify C9ALS/FTD by regulating autophagic clearance of DPR proteins. Caution should therefore be taken when considering modifying TMEM106B expression levels as a therapeutic approach in ALS/FTD.

11.
Mol Neurodegener ; 16(1): 53, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376242

RESUMEN

BACKGROUND: Loss of motor neurons in amyotrophic lateral sclerosis (ALS) leads to progressive paralysis and death. Dysregulation of thousands of RNA molecules with roles in multiple cellular pathways hinders the identification of ALS-causing alterations over downstream changes secondary to the neurodegenerative process. How many and which of these pathological gene expression changes require therapeutic normalisation remains a fundamental question. METHODS: Here, we investigated genome-wide RNA changes in C9ORF72-ALS patient-derived neurons and Drosophila, as well as upon neuroprotection taking advantage of our gene therapy approach which specifically inhibits the SRSF1-dependent nuclear export of pathological C9ORF72-repeat transcripts. This is a critical study to evaluate (i) the overall safety and efficacy of the partial depletion of SRSF1, a member of a protein family involved itself in gene expression, and (ii) a unique opportunity to identify neuroprotective RNA changes. RESULTS: Our study shows that manipulation of 362 transcripts out of 2257 pathological changes, in addition to inhibiting the nuclear export of repeat transcripts, is sufficient to confer neuroprotection in C9ORF72-ALS patient-derived neurons. In particular, expression of 90 disease-altered transcripts is fully reverted upon neuroprotection leading to the characterisation of a human C9ORF72-ALS disease-modifying gene expression signature. These findings were further investigated in vivo in diseased and neuroprotected Drosophila transcriptomes, highlighting a list of 21 neuroprotective changes conserved with 16 human orthologues in patient-derived neurons. We also functionally validated the high neuroprotective potential of one of these disease-modifying transcripts, demonstrating that inhibition of ALS-upregulated human KCNN1-3 (Drosophila SK) voltage-gated potassium channel orthologs mitigates degeneration of human motor neurons and Drosophila motor deficits. CONCLUSIONS: Strikingly, the partial depletion of SRSF1 leads to expression changes in only a small proportion of disease-altered transcripts, indicating that not all RNA alterations need normalization and that the gene therapeutic approach is safe in the above preclinical models as it does not disrupt globally gene expression. The efficacy of this intervention is also validated at genome-wide level with transcripts modulated in the vast majority of biological processes affected in C9ORF72-ALS. Finally, the identification of a characteristic signature with key RNA changes modified in both the disease state and upon neuroprotection also provides potential new therapeutic targets and biomarkers.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/metabolismo , Neuronas/metabolismo , ARN/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Drosophila , Humanos , Neuronas/patología , Neuroprotección/fisiología
12.
Curr Opin Neurol ; 34(5): 748-755, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34392299

RESUMEN

PURPOSE OF REVIEW: An intronic G4C2 expansion mutation in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Although there are currently no treatments for this insidious, fatal disease, intense research has led to promising therapeutic strategies, which will be discussed here. RECENT FINDINGS: Therapeutic strategies for C9-ALS/FTD have primarily focused on reducing the toxic effects of mutant expansion RNAs or the dipeptide repeat proteins (DPRs). The pathogenic effects of G4C2 expansion transcripts have been targeted using approaches aimed at promoting their degradation, inhibiting nuclear export or silencing transcription. Other promising strategies include immunotherapy to reduce the DPRs themselves, reducing RAN translation, removing the repeats using DNA or RNA editing and manipulation of downstream disease-altered stress granule pathways. Finally, understanding the molecular triggers that lead to pheno-conversion may lead to opportunities that can delay symptomatic disease onset. SUMMARY: A large body of evidence implicates RAN-translated DPRs as a main driver of C9-ALS/FTD. Promising therapeutic strategies for these devastating diseases are being rapidly developed with several approaches already in or approaching clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/terapia , Humanos , Proteínas , Gránulos de Estrés
13.
Biochem Soc Trans ; 49(2): 775-792, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33729487

RESUMEN

Repeat-associated non-AUG (RAN) translation was discovered in 2011 in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1). This non-canonical form of translation occurs in all reading frames from both coding and non-coding regions of sense and antisense transcripts carrying expansions of trinucleotide to hexanucleotide repeat sequences. RAN translation has since been reported in 7 of the 53 known microsatellite expansion disorders which mainly present with neurodegenerative features. RAN translation leads to the biosynthesis of low-complexity polymeric repeat proteins with aggregating and cytotoxic properties. However, the molecular mechanisms and protein factors involved in assembling functional ribosomes in absence of canonical AUG start codons remain poorly characterised while secondary repeat RNA structures play key roles in initiating RAN translation. Here, we briefly review the repeat expansion disorders, their complex pathogenesis and the mechanisms of physiological translation initiation together with the known factors involved in RAN translation. Finally, we discuss research challenges surrounding the understanding of pathogenesis and future directions that may provide opportunities for the development of novel therapeutic approaches for this group of incurable neurodegenerative diseases.


Asunto(s)
Codón Iniciador/genética , Repeticiones de Microsatélite/genética , Enfermedades del Sistema Nervioso/genética , Biosíntesis de Proteínas/genética , Expansión de Repetición de Trinucleótido/genética , Ataxinas/genética , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Degeneraciones Espinocerebelosas/genética
14.
Aging Cell ; 20(1): e13281, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33314575

RESUMEN

Astrocytes are highly specialised cells, responsible for CNS homeostasis and neuronal activity. Lack of human in vitro systems able to recapitulate the functional changes affecting astrocytes during ageing represents a major limitation to studying mechanisms and potential therapies aiming to preserve neuronal health. Here, we show that induced astrocytes from fibroblasts donors in their childhood or adulthood display age-related transcriptional differences and functionally diverge in a spectrum of age-associated features, such as altered nuclear compartmentalisation, nucleocytoplasmic shuttling properties, oxidative stress response and DNA damage response. Remarkably, we also show an age-related differential response of induced neural progenitor cells derived astrocytes (iNPC-As) in their ability to support neurons in co-culture upon pro-inflammatory stimuli. These results show that iNPC-As are a renewable, readily available resource of human glia that retain the age-related features of the donor fibroblasts, making them a unique and valuable model to interrogate human astrocyte function over time in human CNS health and disease.


Asunto(s)
Astrocitos/metabolismo , Fibroblastos/metabolismo , Envejecimiento , Sistema Nervioso Central , Humanos
15.
Front Neurosci ; 15: 783624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002606

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. As with the majority of neurodegenerative diseases, the pathological hallmarks of ALS involve proteinopathies which lead to the formation of various polyubiquitylated protein aggregates in neurons and glia. ALS is a highly heterogeneous disease, with both familial and sporadic forms arising from the convergence of multiple disease mechanisms, many of which remain elusive. There has been considerable research effort invested into exploring these disease mechanisms and in recent years dysregulation of RNA metabolism and mitochondrial function have emerged as of crucial importance to the onset and development of ALS proteinopathies. Widespread alterations of the RNA metabolism and post-translational processing of proteins lead to the disruption of multiple biological pathways. Abnormal mitochondrial structure, impaired ATP production, dysregulation of energy metabolism and calcium homeostasis as well as apoptosis have been implicated in the neurodegenerative process. Dysfunctional mitochondria further accumulate in ALS motor neurons and reflect a wider failure of cellular quality control systems, including mitophagy and other autophagic processes. Here, we review the evidence for RNA and mitochondrial dysfunction as some of the earliest critical pathophysiological events leading to the development of ALS proteinopathies, explore their relative pathological contributions and their points of convergence with other key disease mechanisms. This review will focus primarily on mutations in genes causing four major types of ALS (C9ORF72, SOD1, TARDBP/TDP-43, and FUS) and in protein homeostasis genes (SQSTM1, OPTN, VCP, and UBQLN2) as well as sporadic forms of the disease. Finally, we will look to the future of ALS research and how an improved understanding of central mechanisms underpinning proteinopathies might inform research directions and have implications for the development of novel therapeutic approaches.

16.
Curr Alzheimer Res ; 17(7): 667-679, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33023447

RESUMEN

BACKGROUND: Research indicates that polygenic indices of risk of Alzheimer's disease are linked to clinical profiles. OBJECTIVE: Given the "genetic centrality" of the APOE gene, we tested whether this held true for both APOE-ε4 carriers and non-carriers. METHODS: A polygenic hazard score (PHS) was extracted from 784 non-demented participants recruited in the Alzheimer's Disease Neuroimaging Initiative and stratified by APOE ε4 status. Datasets were split into sub-cohorts defined by clinical (unimpaired/MCI) and amyloid status (Aß+/Aß-). Linear models were devised in each sub-cohort and for each APOE-ε4 status to test the association between PHS and memory, executive functioning and grey-matter volumetric maps. RESULTS: PHS predicted memory and executive functioning in ε4ε3 MCI patients, memory in ε3ε3 MCI patients, and memory in ε4ε3 Aß+ participants. PHS also predicted volume in sensorimotor regions in ε3ε3 Aß+ participants. CONCLUSION: The link between polygenic hazard and neurocognitive variables varies depending on APOE-ε4 allele status. This suggests that clinical phenotypes might be influenced by complex genetic interactions.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Marcadores Genéticos/genética , Genotipo , Herencia Multifactorial/genética , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
17.
Nat Rev Neurol ; 16(8): 440-456, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32669685

RESUMEN

Globally, there is a huge unmet need for effective treatments for neurodegenerative diseases. The complexity of the molecular mechanisms underlying neuronal degeneration and the heterogeneity of the patient population present massive challenges to the development of early diagnostic tools and effective treatments for these diseases. Machine learning, a subfield of artificial intelligence, is enabling scientists, clinicians and patients to address some of these challenges. In this Review, we discuss how machine learning can aid early diagnosis and interpretation of medical images as well as the discovery and development of new therapies. A unifying theme of the different applications of machine learning is the integration of multiple high-dimensional sources of data, which all provide a different view on disease, and the automated derivation of actionable insights.


Asunto(s)
Aprendizaje Automático/tendencias , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/terapia , Humanos , Neuroimagen/métodos , Neuroimagen/tendencias
18.
EBioMedicine ; 40: 626-635, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30711519

RESUMEN

BACKGROUND: Astrocytes regulate neuronal function, synaptic formation and maintenance partly through secreted extracellular vesicles (EVs). In amyotrophic lateral sclerosis (ALS) astrocytes display a toxic phenotype that contributes to motor neuron (MN) degeneration. METHODS: We used human induced astrocytes (iAstrocytes) from 3 ALS patients carrying C9orf72 mutations and 3 non-affected donors to investigate the role of astrocyte-derived EVs (ADEVs) in ALS astrocyte toxicity. ADEVs were isolated from iAstrocyte conditioned medium via ultracentrifugation and resuspended in fresh astrocyte medium before testing ADEV impact on HB9-GFP+ mouse motor neurons (Hb9-GFP+ MN). We used post-mortem brain and spinal cord tissue from 3 sporadic ALS and 3 non-ALS cases for PCR analysis. FINDINGS: We report that EV formation and miRNA cargo are dysregulated in C9ORF72-ALS iAstrocytes and this affects neurite network maintenance and MN survival in vitro. In particular, we have identified downregulation of miR-494-3p, a negative regulator of semaphorin 3A (SEMA3A) and other targets involved in axonal maintenance. We show here that by restoring miR-494-3p levels through expression of an engineered miRNA mimic we can downregulate Sema3A levels in MNs and increases MN survival in vitro. Consistently, we also report lower levels of mir-494-3p in cortico-spinal tract tissue isolated from sporadic ALS donors, thus supporting the pathological importance of this pathway in MNs and its therapeutic potential. INTERPRETATION: ALS ADEVs and their miRNA cargo are involved in MN death in ALS and we have identified miR-494-3p as a potential therapeutic target. FUNDING: Thierry Latran Fondation and Academy of Medical Sciences.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Astrocitos/metabolismo , Proteína C9orf72/genética , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/diagnóstico , Animales , Autopsia , Biopsia , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Vesículas Extracelulares/ultraestructura , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , MicroARNs/genética , Persona de Mediana Edad , Modelos Biológicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Mutación , Interferencia de ARN , Semaforina-3A/genética , Semaforina-3A/metabolismo , Piel/metabolismo , Piel/patología
19.
Cell Rep ; 26(9): 2298-2306.e5, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30811981

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder without effective neuroprotective therapy. Known genetic variants impair pathways, including RNA processing, axonal transport, and protein homeostasis. We report ALS-causing mutations within the gene encoding the glycosyltransferase GLT8D1. Exome sequencing in an autosomal-dominant ALS pedigree identified p.R92C mutations in GLT8D1, which co-segregate with disease. Sequencing of local and international cohorts demonstrated significant ALS association in the same exon, including additional rare deleterious mutations in conserved amino acids. Mutations are associated with the substrate binding site, and both R92C and G78W changes impair GLT8D1 enzyme activity. Mutated GLT8D1 exhibits in vitro cytotoxicity and induces motor deficits in zebrafish consistent with ALS. Relative toxicity of mutations in model systems mirrors clinical severity. In conclusion, we have linked ALS pathophysiology to inherited mutations that diminish the activity of a glycosyltransferase enzyme.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Glicosiltransferasas/genética , Mutación , Esclerosis Amiotrófica Lateral/diagnóstico , Animales , Línea Celular , Supervivencia Celular , Exones , Femenino , Técnicas de Silenciamiento del Gen , Glicosiltransferasas/metabolismo , Aparato de Golgi/enzimología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neuronas/enzimología , Dominios Proteicos/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
20.
Brain ; 142(3): 586-605, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30698736

RESUMEN

As clinical evidence supports a negative impact of dysfunctional energy metabolism on the disease progression in amyotrophic lateral sclerosis, it is vital to understand how the energy metabolic pathways are altered and whether they can be restored to slow disease progression. Possible approaches include increasing or rerouting catabolism of alternative fuel sources to supplement the glycolytic and mitochondrial pathways such as glycogen, ketone bodies and nucleosides. To analyse the basis of the catabolic defect in amyotrophic lateral sclerosis we used a novel phenotypic metabolic array. We profiled fibroblasts and induced neuronal progenitor-derived human induced astrocytes from C9orf72 amyotrophic lateral sclerosis patients compared to normal controls, measuring the rates of production of reduced nicotinamide adenine dinucleotides from 91 potential energy substrates. This approach shows for the first time that C9orf72 human induced astrocytes and fibroblasts have an adenosine to inosine deamination defect caused by reduction of adenosine deaminase, which is also observed in induced astrocytes from sporadic patients. Patient-derived induced astrocyte lines were more susceptible to adenosine-induced toxicity, which could be mimicked by inhibiting adenosine deaminase in control lines. Furthermore, adenosine deaminase inhibition in control induced astrocytes led to increased motor neuron toxicity in co-cultures, similar to the levels observed with patient derived induced astrocytes. Bypassing metabolically the adenosine deaminase defect by inosine supplementation was beneficial bioenergetically in vitro, increasing glycolytic energy output and leading to an increase in motor neuron survival in co-cultures with induced astrocytes. Inosine supplementation, in combination with modulation of the level of adenosine deaminase may represent a beneficial therapeutic approach to evaluate in patients with amyotrophic lateral sclerosis.


Asunto(s)
Adenosina Desaminasa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/metabolismo , Adenosina Desaminasa/fisiología , Adulto , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Astrocitos/metabolismo , Proteína C9orf72/metabolismo , Muerte Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Progresión de la Enfermedad , Metabolismo Energético/fisiología , Femenino , Fibroblastos/metabolismo , Humanos , Inosina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...