Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 90(24): 11220-11230, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27707923

RESUMEN

Most double-stranded RNA (dsRNA) viruses are transcribed and replicated in a specialized icosahedral capsid with a T=1 lattice consisting of 60 asymmetric capsid protein (CP) dimers. These capsids help to organize the viral genome and replicative complex(es). They also act as molecular sieves that isolate the virus genome from host defense mechanisms and allow the passage of nucleotides and viral transcripts. Rosellinia necatrix quadrivirus 1 (RnQV1), the type species of the family Quadriviridae, is a dsRNA fungal virus with a multipartite genome consisting of four monocistronic segments (segments 1 to 4). dsRNA-2 and dsRNA-4 encode two CPs (P2 and P4, respectively), which coassemble into ∼450-Å-diameter capsids. We used three-dimensional cryo-electron microscopy combined with complementary biophysical techniques to determine the structures of RnQV1 virion strains W1075 and W1118. RnQV1 has a quadripartite genome, and the capsid is based on a single-shelled T=1 lattice built of P2-P4 dimers. Whereas the RnQV1-W1118 capsid is built of full-length CP, P2 and P4 of RnQV1-W1075 are cleaved into several polypeptides, maintaining the capsid structural organization. RnQV1 heterodimers have a quaternary organization similar to that of homodimers of reoviruses and other dsRNA mycoviruses. The RnQV1 capsid is the first T=1 capsid with a heterodimer as an asymmetric unit reported to date and follows the architectural principle for dsRNA viruses that a 120-subunit capsid is a conserved assembly that supports dsRNA replication and organization. IMPORTANCE: Given their importance to health, members of the family Reoviridae are the basis of most structural and functional studies and provide much of our knowledge of dsRNA viruses. Analysis of bacterial, protozoal, and fungal dsRNA viruses has improved our understanding of their structure, function, and evolution, as well. Here, we studied a dsRNA virus that infects the fungus Rosellinia necatrix, an ascomycete that is pathogenic to a wide range of plants. Using three-dimensional cryo-electron microscopy and analytical ultracentrifugation analysis, we determined the structure and stoichiometry of Rosellinia necatrix quadrivirus 1 (RnQV1). The RnQV1 capsid is a T=1 capsid with 60 heterodimers as the asymmetric units. The large amount of genetic information used by RnQV1 to construct a simple T=1 capsid is probably related to the numerous virus-host and virus-virus interactions that it must face in its life cycle, which lacks an extracellular phase.


Asunto(s)
Proteínas de la Cápside/química , Cápside/ultraestructura , Genoma Viral , Virus ARN/ultraestructura , ARN Viral/ultraestructura , Virión/ultraestructura , Secuencia de Aminoácidos , Cápside/química , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Multimerización de Proteína , Estructura Secundaria de Proteína , Virus ARN/química , ARN Viral/metabolismo , Virión/química , Replicación Viral
2.
Virus Res ; 219: 100-107, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27208849

RESUMEN

A transmissible disease of the plant pathogenic fungus Helminthosporium victoriae, the causal agent of Victoria blight of oats, was reported more than 50 years ago. Diseased, but not normal, isolates, of H. victoriae contain two distinct viruses designated according to their sedimentation values as victorivirus Helminthosporium victoriae virus 190S (HvV190S) and chrysovirus Helminthosporium victoriae 145S (HvV145S). Although a viral etiology of the disease was previously proposed, conclusive evidence was lacking. Here we present unequivocal evidence based on transfecting virus-free H. victoriae protoplasts with purified virus particles showing that HvV190S is essential for disease development. Furthermore, we show an expansion of the host range of HvV190S to include Cryphonectria parasitica and we also show similarity in a subset of phenotypic traits between HvV190S-infected RNA silencing deficient mutant (Δdcl-2) of C. parasitica and a strain of H. victoriae. In virulence assays on detached American chestnut branches and Red Delicious apple fruits, HvV190S-infected C. parasitica strain Δdcl-2 was markedly less virulent than wild type and virus-free Δdcl-2 C. parasitica strains. Furthermore, the hypovirulent HvV190S-infected C. parasitica Δdcl-2 strain exhibited strong antifungal activity in dual culture with the plant pathogenic fungus Sclerotinia sclerotiorum. No such inhibitory activity was observed in comparable dual cultures with wild type and virus-free Δdcl-2 C. parasitica strains. The discovery that infection with HvV190S induced a hypovirulent phenotype in a heterologous plant pathogenic host is very significant since it might be possible to convert other economically important plant pathogenic fungi to hypovirulence using HvV190S.

3.
Virus Res ; 213: 238-245, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26724750

RESUMEN

A transmissible disease of the plant pathogenic fungus Helminthosporium victoriae, the causal agent of Victoria blight of oats, was reported more than 50 years ago. Diseased, but not normal, isolates, of H. victoriae contain two distinct viruses designated according to their sedimentation values as victorivirus Helminthosporium victoriae virus 190S (HvV190S) and chrysovirus Helminthosporium victoriae 145S (HvV145S). Although a viral etiology of the disease was previously proposed, conclusive evidence was lacking. Here we present unequivocal evidence based on transfecting virus-free H. victoriae protoplasts with purified virus particles showing that HvV190S is essential for disease development. Furthermore, we show an expansion of the host range of HvV190S to include Cryphonectria parasitica and we also show similarity in a subset of phenotypic traits between HvV190S-infected RNA silencing deficient mutant (Δdcl-2) of C. parasitica and a strain of H. victoriae. In virulence assays on detached American chestnut branches and Red Delicious apple fruits, HvV190S-infected C. parasitica strain Δdcl-2 was markedly less virulent than wild type and virus-free Δdcl-2 C. parasitica strains. Furthermore, the hypovirulent HvV190S-infected C. parasitica Δdcl-2 strain exhibited strong antifungal activity in dual culture with the plant pathogenic fungus Sclerotinia sclerotiorum. No such inhibitory activity was observed in comparable dual cultures with wild type and virus-free Δdcl-2 C. parasitica strains. The discovery that infection with HvV190S induced a hypovirulent phenotype in a heterologous plant pathogenic host is very significant since it might be possible to convert other economically important plant pathogenic fungi to hypovirulence using HvV190S.


Asunto(s)
Ascomicetos/patogenicidad , Ascomicetos/virología , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Totiviridae/fisiología , Aesculus/microbiología , Ascomicetos/crecimiento & desarrollo , Malus/microbiología , Totiviridae/crecimiento & desarrollo , Virulencia
4.
Virology ; 474: 131-43, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25463611

RESUMEN

Prototype victorivirus HvV190S employs stop/restart translation to express its RdRp from the downstream ORF in its bicistronic mRNA. The signals for this activity appear to include a predicted RNA pseudoknot directly upstream of the CP stop and RdRp start codons, which overlap in the motif AUGA. Here we used a dual-fluorescence system to further define which HvV190S sequences are important for stop/restart translation and found that the AUGA motif plus 38 nt directly upstream are both necessary and sufficient for this activity. This RNA cassette encompasses the predicted pseudoknot, and indeed substitutions that disrupted the pseudoknot disrupted the activity whereas complementary substitutions that restored the pseudoknot restored the activity. Replacement of this RNA cassette with those from other victoriviruses with a predicted pseudoknot in comparable position also supported stop/restart translation. To our knowledge, this is the first example of stop/restart translation regulated by an RNA pseudoknot.


Asunto(s)
Helminthosporium/virología , Totiviridae/genética , Secuencia de Bases , Codón Iniciador/genética , Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , ARN Viral/química , ARN Viral/genética , Proteínas Recombinantes/genética , Eliminación de Secuencia
5.
Proc Natl Acad Sci U S A ; 111(21): 7641-6, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24821769

RESUMEN

Viruses evolve so rapidly that sequence-based comparison is not suitable for detecting relatedness among distant viruses. Structure-based comparisons suggest that evolution led to a small number of viral classes or lineages that can be grouped by capsid protein (CP) folds. Here, we report that the CP structure of the fungal dsRNA Penicillium chrysogenum virus (PcV) shows the progenitor fold of the dsRNA virus lineage and suggests a relationship between lineages. Cryo-EM structure at near-atomic resolution showed that the 982-aa PcV CP is formed by a repeated α-helical core, indicative of gene duplication despite lack of sequence similarity between the two halves. Superimposition of secondary structure elements identified a single "hotspot" at which variation is introduced by insertion of peptide segments. Structural comparison of PcV and other distantly related dsRNA viruses detected preferential insertion sites at which the complexity of the conserved α-helical core, made up of ancestral structural motifs that have acted as a skeleton, might have increased, leading to evolution of the highly varied current structures. Analyses of structural motifs only apparent after systematic structural comparisons indicated that the hallmark fold preserved in the dsRNA virus lineage shares a long (spinal) α-helix tangential to the capsid surface with the head-tailed phage and herpesvirus viral lineage.


Asunto(s)
Evolución Molecular , Modelos Moleculares , Conformación de Ácido Nucleico , Penicillium chrysogenum/virología , Virus ARN/ultraestructura , ARN Bicatenario/ultraestructura , Secuencia de Aminoácidos , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Terciaria de Proteína , Virus ARN/genética , ARN Bicatenario/genética , Análisis de Secuencia de ARN
6.
Mol Plant Pathol ; 15(2): 145-60, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24118726

RESUMEN

Plant diseases inflict heavy losses on soybean yield, necessitating an understanding of the molecular mechanisms underlying biotic/abiotic stress responses. Ca(2) (+) is an important universal messenger, and protein sensors, prominently calmodulins (CaMs), recognize cellular changes in Ca(2) (+) in response to diverse signals. Because the development of stable transgenic soybeans is laborious and time consuming, we used the Bean pod mottle virus (BPMV)-based vector for rapid and efficient protein expression and gene silencing. The present study focuses on the functional roles of the gene encoding the soybean CaM isoform GmCaM4. Overexpression of GmCaM4 in soybean resulted in enhanced resistance to three plant pathogens and increased tolerance to high salt conditions. To gain an understanding of the underlying mechanisms, we examined the potential defence pathways involved. Our studies revealed activation/increased expression levels of pathogenesis-related (PR) genes in GmCaM4-overexpressing plants and the accumulation of jasmonic acid (JA). Silencing of GmCaM4, however, markedly repressed the expression of PR genes. We confirmed the in vivo interaction between GmCaM4 and the CaM binding transcription factor Myb2, which regulates the expression of salt-responsive genes, using the yeast two-hybrid (Y2H) system and bimolecular fluorescence complementation assays. GmCaM4 and Glycine max CaM binding receptor-like kinase (GmCBRLK) did not interact in the Y2H assays, but the interaction between GmCaM2 and GmCBRLK was confirmed. Thus, a GmCaM2-GmCBRLK-mediated salt tolerance mechanism, similar to that reported in Glycine soja, may also be functional in soybean. Confocal microscopy showed subcellular localization of the green fluorescent protein (GFP)-GmCaM4 fusion protein in the nucleus and cytoplasm.


Asunto(s)
Adaptación Fisiológica , Calmodulina/genética , Genes de Plantas , Glycine max/genética , Fenómenos Fisiológicos de las Plantas , Isoformas de Proteínas/genética , Cloruro de Sodio , Western Blotting , Calmodulina/metabolismo , Unión Proteica , ARN Mensajero/genética , Glycine max/virología , Fracciones Subcelulares/metabolismo , Transactivadores/metabolismo , Técnicas del Sistema de Dos Híbridos
7.
J Virol ; 86(15): 8314-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22593169

RESUMEN

Cryoelectron microscopy reconstruction of Cryphonectria nitschkei virus 1, a double-stranded RNA (dsRNA) virus, shows that the capsid protein (60 copies/particle) is formed by a repeated helical core, indicative of gene duplication. This unusual organization is common to chrysoviruses. The arrangement of many of these putative α-helices is conserved in the totivirus L-A capsid protein, suggesting a shared motif. Our results indicate that a 120-subunit T=1 capsid is a conserved architecture that optimizes dsRNA replication and organization.


Asunto(s)
Proteínas de la Cápside/química , Pliegue de Proteína , Virus ARN/química , Sordariales/virología , Proteínas de la Cápside/metabolismo , Estructura Secundaria de Proteína , Virus ARN/fisiología , ARN Bicatenario/biosíntesis , ARN Viral/biosíntesis , Replicación Viral/fisiología
8.
J Virol ; 85(14): 7343-52, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21543470

RESUMEN

The genome-length, dicistronic mRNA of the double-stranded RNA fungal virus Helminthosporium victoriae virus 190S (genus Victorivirus, family Totiviridae) contains two long open reading frames (ORFs) that overlap in the tetranucleotide AUGA. Translation of the downstream ORF, which encodes the RNA-dependent RNA polymerase (RdRp), has been proposed to depend on ribosomal reinitiation following termination of the upstream ORF, which encodes the capsid protein. In the current study, we examined the RNA sequence determinants for RdRp translation in this virus and demonstrated that a coupled termination-reinitiation (stop-restart) strategy is indeed used. Signals for termination-reinitiation are found within a 32-nucleotide stretch of RNA immediately upstream of the AUGA motif, including a predicted pseudoknot structure. The close proximity in which this predicted structure is followed by the upstream ORF's stop codon appears to be especially important for promoting translation of the downstream ORF. The normal strong preferences for an AUG start codon and the canonical sequence context to favor translation initiation appear somewhat relaxed for the downstream ORF. Similar sequence motifs and predicted RNA structures in other victoriviruses suggest that they all share a related stop-restart strategy for RdRp translation. Members of the genus Victorivirus thus provide new and unique opportunities for exploring the molecular mechanisms of translational coupling, which remain only partly understood in this and other systems.


Asunto(s)
ARN Viral/genética , Regiones Terminadoras Genéticas , Totiviridae/genética , Secuencia de Bases , Western Blotting , Codón de Terminación , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Homología de Secuencia de Aminoácido
9.
Phytopathology ; 100(9): 880-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20701485

RESUMEN

A broad-spectrum anti-fungal protein of approximately 10 kDa, designated victoriocin, was purified from culture filtrates of a virus-infected isolate of the plant-pathogenic fungus Helminthosporium victoriae (teleomorph: Cochliobolus victoriae) by a multistep procedure involving ultrafiltration and reverse-phase high-performance liquid chromatography (RP-HPLC). Amino acid sequences, obtained by automated Edman degradation sequencing of RP-HPLC-purified victoriocin-derived peptides, were used to design primers for degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) amplification from H. victoriae DNA and cDNA templates. An open reading frame coding for a victoriocin precursor of 183 amino acids with calculated molecular mass of approximately 20 kDa was amplified by PCR from H. victoriae genomic DNA but not from the control fungus Penicillium chrysogenum. Southern hybridization analysis confirmed the presence of the victoriocin gene in all H. victoriae strains tested. Sequence analysis indicated that victoriocin has a sequence motif similar to that found in scorpion short toxin/charybdotoxin and a consensus sequence similar to that found in defensins. Victoriocin, like some other antifungal proteins, including the totivirus-encoded killer proteins, is predicted to be expressed in vivo as a preprotoxin precursor consisting of a hydrophobic N-terminal secretion signal followed by a pro-region and terminating in a classical Kex2p endopeptidase cleavage site that generates the N terminus of the mature victoriocin. A putative cell wall protein of approximately 30 kDa (P30) co-purified with victoriocin from cultural filtrates. The potential role of P30 in the antifungal activity of H. victoriae culture filtrates is discussed.


Asunto(s)
Antifúngicos/metabolismo , Antifúngicos/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Helminthosporium/metabolismo , Helminthosporium/virología , Bacteriófagos , Secuencia de Bases , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Complementario/genética , Hongos/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Reacción en Cadena de la Polimerasa
10.
Phytopathology ; 100(9): 890-6, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20701486

RESUMEN

We have previously reported the isolation and characterization of the broad-spectrum antifungal protein, victoriocin, from culture filtrates of a virus-infected isolate of the plant-pathogenic fungus Helminthosporium (teleomorph: Cochliobolus) victoriae. We predicted that the 10-kDa mature victoriocin is derived in vivo from a preprotoxin precursor that is processed by a signal peptidase and kexin-like endopeptidase. We also presented evidence that the victoriocin precursor is encoded by a host gene, designated the victoriocin (vin) gene. In the present study, an H. victoriae genomic DNA library was constructed in the cosmid vector pMLF-2, and a cosmid clone carrying the vin gene and flanking sequences was isolated and used to generate constructs for transformation of virus-free and virus-infected H. victoriae isolates with the vin gene. Culture filtrates of the virus-free vin transformants exhibited high levels of antifungal activity compared with that revealed by the nontransformed virus-free wild-type strain, which exhibited little or no antifungal activity. Moreover, transformation of the wild-type virus-infected H. victoriae strain with the vin gene resulted in still higher production of victoriocin and higher antifungal activity in the culture filtrates of the vin transformants compared with the virus-infected wild-type strain. As previously predicted, the presence in the vin transformants of the preprovictoriocin and its post-translationally generated products, the provictoriocin and the mature victoriocin, was clearly demonstrated. Processing of the victoriocin preprotoxin requires eukaryotic host factors because no processing occurred in an in vitro translation system or in bacteria. It is of interest that some of the virus-free isolates transformed with the vin gene exhibited some features of the virus-induced disease phenotype, including moderate stunting and sectoring. Present data suggests that victoriocin may play an indirect role in disease development. Taken together, these results indicate that victoriocin is the primary protein responsible for the antifungal activity in culture filtrates of virus-infected H. victoriae isolates and that virus infection upregulates the expression of victoriocin. Overproduction of victoriocin may give the slower-growing virus-infected fungal strains some competitive advantage by inhibiting the growth of other fungi.


Asunto(s)
Antifúngicos/farmacología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Helminthosporium/metabolismo , Antifúngicos/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hongos/efectos de los fármacos , Helminthosporium/citología , Helminthosporium/virología , Transformación Genética
11.
Virology ; 405(2): 309-13, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20598724

RESUMEN

X-ray fiber diffraction data were obtained and helical pitch and symmetry were determined for seven members of the family Potyviridae, including representatives from the genera Potyvirus, Rymovirus, and Tritimovirus. The diffraction patterns are similar, as expected. There are, however, significant variations in the symmetries, as previously found among the flexible potexviruses, but not among the rigid tobamoviruses. Wheat streak mosaic virus, the only member of the genus Tritimovirus examined, displayed the largest deviations in diffraction data and helical parameters from the other viruses in the group.


Asunto(s)
Proteínas de la Cápside/química , Virus de Plantas/ultraestructura , Potyviridae/ultraestructura , Difracción de Rayos X , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Datos de Secuencia Molecular , Virus de Plantas/clasificación , Virus de Plantas/aislamiento & purificación , Virus de Plantas/metabolismo , Potyviridae/clasificación , Potyviridae/aislamiento & purificación , Potyviridae/metabolismo , Potyvirus/metabolismo , Potyvirus/ultraestructura , Análisis de Secuencia de ADN , Difracción de Rayos X/instrumentación , Difracción de Rayos X/métodos
12.
J Struct Biol ; 172(3): 363-71, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20599510

RESUMEN

Filamentous fungus Fusarium poae is a worldwide cause of the economically important disease Fusarium head blight of cereal grains. The fungus is itself commonly infected with a bisegmented dsRNA virus from the family Partitiviridae. For this study, we determined the structure of partitivirus Fusarium poae virus 1 (FpV1) to a resolution of 5.6Å or better by electron cryomicroscopy and three-dimensional image reconstruction. The main structural features of FpV1 are consistent with those of two other fungal partitiviruses for which high-resolution structures have been recently reported. These shared features include a 120-subunit T=1 capsid comprising 60 quasisymmetrical capsid protein dimers with both shell and protruding domains. Distinguishing features are evident throughout the FpV1 capsid, however, consistent with its more massive subunits and its greater phylogenetic divergence relative to the other two structurally characterized partitiviruses. These results broaden our understanding of conserved and variable elements of fungal partitivirus structure, as well as that of vertebrate picobirnavirus, and support the suggestion that a phylogenetic subcluster of partitiviruses closely related to FpV1 should constitute a separate taxonomic genus.


Asunto(s)
Picobirnavirus/ultraestructura , Cápside/ultraestructura , Microscopía por Crioelectrón , Imagenología Tridimensional , Picobirnavirus/clasificación , Virión/ultraestructura
13.
Biophys J ; 99(2): 685-94, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20643089

RESUMEN

Most dsRNA viruses have a genome-enclosing capsid that comprises 120 copies of a single coat protein (CP). These 120 CP subunits are arranged as asymmetrical dimers that surround the icosahedral fivefold axes, forming pentamers of dimers that are thought to be assembly intermediates. This scheme is violated, however, in recent structures of two dsRNA viruses, a fungal virus from family Partitiviridae and a rabbit virus from family Picobirnaviridae, both of which have 120 CP subunits organized as dimers of quasisymmetrical dimers. In this study, we report the CP backbone trace of a second fungal partitivirus, determined in this case by electron cryomicroscopy and homology modeling. This virus also exhibits quasisymmetrical CP dimers that are connected by prominent surface arches and stabilized by domain swapping between the two CP subunits. The CP fold is dominated by alpha-helices, although beta-strands mediate several important contacts. A dimer-of-dimers assembly intermediate is again implicated. The disordered N-terminal tail of each CP subunit protrudes into the particle interior and likely interacts with the genome during packaging and/or transcription. These results broaden our understanding of conserved and variable aspects of partitivirus structure and reflect the growing use of electron cryomicroscopy for atomic modeling of protein folds.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Virus ARN/ultraestructura , Homología Estructural de Proteína , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Genoma Viral/genética , Modelos Moleculares , Datos de Secuencia Molecular , Tamaño de la Partícula , Picobirnavirus/genética , Multimerización de Proteína , Estructura Secundaria de Proteína , Virus ARN/genética , Conejos , Transcripción Genética
14.
J Virol ; 84(14): 7256-66, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20463071

RESUMEN

Penicillium chrysogenum virus (PcV), a member of the Chrysoviridae family, is a double-stranded RNA (dsRNA) fungal virus with a multipartite genome, with each RNA molecule encapsidated in a separate particle. Chrysoviruses lack an extracellular route and are transmitted during sporogenesis and cell fusion. The PcV capsid, based on a T=1 lattice containing 60 subunits of the 982-amino-acid capsid protein, remains structurally undisturbed throughout the viral cycle, participates in genome metabolism, and isolates the virus genome from host defense mechanisms. Using three-dimensional cryoelectron microscopy, we determined the structure of the PcV virion at 8.0 A resolution. The capsid protein has a high content of rod-like densities characteristic of alpha-helices, forming a repeated alpha-helical core indicative of gene duplication. Whereas the PcV capsid protein has two motifs with the same fold, most dsRNA virus capsid subunits consist of dimers of a single protein with similar folds. The spatial arrangement of the alpha-helical core resembles that found in the capsid protein of the L-A virus, a fungal totivirus with an undivided genome, suggesting a conserved basic fold. The encapsidated genome is organized in concentric shells; whereas the inner dsRNA shells are well defined, the outermost layer is dense due to numerous interactions with the inner capsid surface, specifically, six interacting areas per monomer. The outermost genome layer is arranged in an icosahedral cage, sufficiently well ordered to allow for modeling of an A-form dsRNA. The genome ordering might constitute a framework for dsRNA transcription at the capsid interior and/or have a structural role for capsid stability.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Duplicación de Gen , Penicillium chrysogenum/virología , Virus ARN/genética , Virus ARN/metabolismo , Secuencia de Aminoácidos , Cápside/química , Cápside/ultraestructura , Microscopía por Crioelectrón , Genes Virales , Genoma Viral , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Virus ARN/química , ARN Bicatenario/química , ARN Bicatenario/genética , Virión/química , Virión/genética , Virión/ultraestructura
15.
Proc Natl Acad Sci U S A ; 106(11): 4225-30, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19246376

RESUMEN

For most dsRNA viruses, the genome-enclosing capsid comprises 120 copies of a single capsid protein (CP) organized into 60 icosahedrally equivalent dimers, generally identified as 2 nonsymmetricallyinteracting CP molecules with extensive lateral contacts. The crystal structure of a partitivirus, Penicillium stoloniferum virus F (PsV-F), reveals a different organization, in which the CP dimer is related by almost-perfect local 2-fold symmetry, forms prominent surface arches, and includes extensive structure swapping between the 2 subunits. An electron cryomicroscopy map of PsV-F shows that the disordered N terminus of each CP molecule interacts with the dsRNA genome and probably participates in its packaging or transcription. Intact PsV-F particles mediate semiconservative transcription, and transcripts are likely to exit through negatively charged channels at the icosahedral 5-fold axes. Other findings suggest that the PsV-F capsid is assembled from dimers of CP dimers, with an arrangement similar to flavivirus E glycoproteins.


Asunto(s)
Cápside/química , Virus ARN/química , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Cristalización , Modelos Biológicos , Virus ARN/genética , ARN Bicatenario , Proteínas de Unión al ARN , Transcripción Genética
16.
J Virol ; 82(19): 9546-54, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18667514

RESUMEN

Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.


Asunto(s)
Virus de Plantas/química , Potexvirus/genética , Cápside/química , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Flexiviridae/química , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Conformación Molecular , Virus de Plantas/genética , Potyvirus/química , ARN Viral , Virión
17.
Structure ; 16(5): 776-86, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18462682

RESUMEN

Two distinct partitiviruses, Penicillium stoloniferum viruses S and F, can be isolated from the fungus Penicillium stoloniferum. The bisegmented dsRNA genomes of these viruses are separately packaged in icosahedral capsids containing 120 coat-protein subunits. We used transmission electron cryomicroscopy and three-dimensional image reconstruction to determine the structure of Penicillium stoloniferum virus S at 7.3 A resolution. The capsid, approximately 350 A in outer diameter, contains 12 pentons, each of which is topped by five arched protrusions. Each of these protrusions is, in turn, formed by a quasisymmetric dimer of coat protein, for a total of 60 such dimers per particle. The density map shows numerous tubular features, characteristic of alpha helices and consistent with secondary structure predictions for the coat protein. This three-dimensional structure of a virus from the family Partitiviridae exhibits both similarities to and differences from the so-called "T = 2" capsids of other dsRNA viruses.


Asunto(s)
Proteínas de la Cápside/química , Cápside/química , Penicillium/virología , Virus ARN/química , Secuencia de Aminoácidos , Cápside/metabolismo , Cápside/ultraestructura , Microscopía por Crioelectrón , Dimerización , Imagenología Tridimensional , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , ARN Bicatenario/química , Virión/aislamiento & purificación
18.
Phytopathology ; 96(3): 326-32, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18944449

RESUMEN

ABSTRACT The cellular protein Hv-p68 is a novel alcohol oxidase/RNA-binding protein that is overexpressed in virus-infected isolates of the plant-pathogenic fungus Helminthosporium victoriae (teleomorph: Cochliobolus victoriae). Overproduction of Hv-p68 has been hypothesized to lead to the accumulation of toxic aldehydes and to induce the disease phenotype associated with the virus-infected isolates. We overexpressed the Hv-p68 gene in virus-free isolates and evaluated the morphology of the resulting colonies. We cloned and sequenced the Hv-p68 genomic DNA, which contains five introns and the complete Hv-p68 coding sequence. Vectors for overexpression of the Hv-p68 gene were constructed with either Hv-p68 cDNA or the intron-containing Hv-p68 genomic DNA. Expression of Hv-p68 was significantly higher if the genomic sequence was used for transformation than if the cDNA sequence was used. The virus-free fungal transformants that overexpressed Hv-p68 gene did not exhibit the disease phenotype. In contrast, these transformants showed enhanced growth rates when compared with the nontransformed and empty vector controls. Interestingly, overexpression of Hv-p68 in a fungal isolate infected with both the totivirus Helminthosporium victoriae 190S virus (Hv190SV) and the chrysovirus Helminthosporium victoriae 145S virus (Hv145S) showed enhanced accumulation of the Hv145SV double-stranded (ds)RNA, but not of the Hv190SV. These results are consistent with an earlier report that Hv-p68 co-purified with viral dsRNA, mainly that of the Hv145SV. Elucidation of the role of Hv-p68 in disease induction is important for an understanding of host-virus interactions in this fungus-virus system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...